Implicit Large-Eddy Simulation for the High-Order Flux Reconstruction Method

被引:25
作者
Zhu, Hui [1 ]
Fu, Song [1 ]
Shi, Lei [2 ]
Wang, Z. J. [2 ]
机构
[1] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
[2] Univ Kansas, Dept Aerosp Engn, Lawrence, KS 66045 USA
关键词
FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; CIRCULAR-CYLINDER; UNSTRUCTURED GRIDS; BASIC FORMULATION; DIFFERENCE; SCHEMES; FLOW; TURBULENT; CFD;
D O I
10.2514/1.J054826
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
High-order methods have demonstrated their potential in large-eddy simulations of turbulent flows with relatively low Reynolds numbers. The cost becomes a serious limiting factor for high-Reynolds-number problems. A promising approach to reduce the cost of these simulations is the hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation approach. In this paper, a new hybrid Reynolds-averaged Navier-Stokes implicit large-eddy simulation approach for the high-order flux reconstruction/correction procedure via reconstruction method is developed based on a simple algebraic version of the Spalart-Allmaras model in the vicinity of solid walls and an implicit large-eddy simulation approach elsewhere. Despite its simplicity, this approach has demonstrated good performance in simulating turbulent flow at relatively high Reynolds numbers.
引用
收藏
页码:2721 / 2733
页数:13
相关论文
共 42 条
[1]  
[Anonymous], 1989, AIAA PAP
[2]  
Baldwin B.S., 1978, 16 AER SCI M
[3]  
Barth T. J., 1990, 28 AER SCI M
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]  
BERGER M. J., 2012, 50 AIAA AER SCI M
[6]  
Cebici T., 1970, AIAA Journal, V8, P1974, DOI 10.2514/3.6034
[7]   Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows [J].
Chen, Shiyi ;
Xia, Zhenhua ;
Pei, Suyang ;
Wang, Jianchun ;
Yang, Yantao ;
Xiao, Zuoli ;
Shi, Yipeng .
JOURNAL OF FLUID MECHANICS, 2012, 703 :1-28
[8]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[9]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[10]   Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes [J].
De Grazia, D. ;
Mengaldo, G. ;
Moxey, D. ;
Vincent, P. E. ;
Sherwin, S. J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (12) :860-877