Reservoir computing on epidemic spreading: A case study on COVID-19 cases

被引:35
作者
Ghosh, Subrata [1 ]
Senapati, Abhishek [2 ,3 ]
Mishra, Arindam [4 ]
Chattopadhyay, Joydev [2 ]
Dana, Syamal K. [4 ]
Hens, Chittaranjan [1 ]
Ghosh, Dibakar [1 ]
机构
[1] Indian Stat Inst, Phys & Appl Math Unit, 203 BT Rd, Kolkata 700108, India
[2] Indian Stat Inst, Agr & Ecol Res Unit, 203 BT Rd, Kolkata 700108, India
[3] Ctr Adv Syst Understanding CASUS, Goerlitz, Germany
[4] Jadavpur Univ, Dept Math, Kolkata 700032, India
关键词
PREDICTION;
D O I
10.1103/PhysRevE.104.014308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A reservoir computing based echo state network (ESN) is used here for the purpose of predicting the spread of a disease. The current infection trends of a disease in some targeted locations are efficiently captured by the ESN when it is fed with the infection data for other locations. The performance of the ESN is first tested with synthetic data generated by numerical simulations of independent uncoupled patches, each governed by the classical susceptible-infected-recovery model for a choice of distributed infection parameters. From a large pool of synthetic data, the ESN predicts the current trend of infection in 5% patches by exploiting the uncorrelated infection trend of 95% patches. The prediction remains consistent for most of the patches for approximately 4 to 5 weeks. The machine's performance is further tested with real data on the current COVID-19 pandemic collected for different countries. We show that our proposed scheme is able to predict the trend of the disease for up to 3 weeks for some targeted locations. An important point is that no detailed information on the epidemiological rate parameters is needed; the success of the machine rather depends on the history of the disease progress represented by the time-evolving data sets of a large number of locations. Finally, we apply a modified version of our proposed scheme for the purpose of future forecasting.
引用
收藏
页数:9
相关论文
共 47 条
[1]  
Al Momani A. A., ARXIV200408897
[2]   Data-based analysis, modelling and forecasting of the COVID-19 outbreak [J].
Anastassopoulou, Cleo ;
Russo, Lucia ;
Tsakris, Athanasios ;
Siettos, Constantinos .
PLOS ONE, 2020, 15 (03)
[3]   A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve [J].
Berihuete, Angel ;
Sanchez-Sanchez, Marta ;
Suarez-Llorens, Alfonso .
MATHEMATICS, 2021, 9 (03) :1-16
[4]   The turning point and end of an expanding epidemic cannot be precisely forecast [J].
Castro, Mario ;
Ares, Saul ;
Cuesta, Jose A. ;
Manrubia, Susanna .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (42) :26190-26196
[5]   Empirical model for short-time prediction of COVID-19 spreading [J].
Catala, Marti ;
Alonso, Sergio ;
Alvarez-Lacalle, Enrique ;
Lopez, Daniel ;
Cardona, Pere-Joan ;
Prats, Clara .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (12)
[6]   Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis [J].
Chakraborty, Tanujit ;
Ghosh, Indrajit .
CHAOS SOLITONS & FRACTALS, 2020, 135
[7]   Mapping topological characteristics of dynamical systems into neural networks: A reservoir computing approach [J].
Chen, Xiaolu ;
Weng, Tongfeng ;
Yang, Huijie ;
Gu, Changgui ;
Zhang, Jie ;
Small, Michael .
PHYSICAL REVIEW E, 2020, 102 (03)
[8]   COVID-19: extending or relaxing distancing control measures [J].
Colbourn, Tim .
LANCET PUBLIC HEALTH, 2020, 5 (05) :E236-E237
[9]   Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil [J].
Dal Molin Ribeiro, Matheus Henrique ;
da Silva, Ramon Gomes ;
Mariani, Viviana Cocco ;
Coelho, Leandro dos Santos .
CHAOS SOLITONS & FRACTALS, 2020, 135
[10]   Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study [J].
Di Castelnuovo, Augusto ;
Bonaccio, Marialaura ;
Costanzo, Simona ;
Gialluisi, Alessandro ;
Antinori, Andrea ;
Berselli, Nausicaa ;
Blandi, Lorenzo ;
Bruno, Raffaele ;
Cauda, Roberto ;
Guaraldi, Giovanni ;
My, Ilaria ;
Menicanti, Lorenzo ;
Parruti, Giustino ;
Patti, Giuseppe ;
Perlini, Stefano ;
Santilli, Francesca ;
Signorelli, Carlo ;
Stefanini, Giulio G. ;
Vergori, Alessandra ;
Abdeddaim, Amina ;
Ageno, Walter ;
Agodi, Antonella ;
Agostoni, Piergiuseppe ;
Aiello, Luca ;
Al Moghazi, Samir ;
Aucella, Filippo ;
Barbieri, Greta ;
Bartoloni, Alessandro ;
Bologna, Carolina ;
Bonfanti, Paolo ;
Brancati, Serena ;
Cacciatore, Francesco ;
Caiano, Lucia ;
Cannata, Francesco ;
Carrozzi, Laura ;
Cascio, Antonio ;
Cingolani, Antonella ;
Cipollone, Francesco ;
Colomba, Claudia ;
Crisetti, Annalisa ;
Crosta, Francesca ;
Danzi, Gian B. ;
D'Ardes, Damiano ;
Donati, Katleen de Gaetano ;
Di Gennaro, Francesco ;
Di Palma, Gisella ;
Di Tano, Giuseppe ;
Fantoni, Massimo ;
Filippini, Tommaso ;
Fioretto, Paola .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2020, 30 (11) :1899-1913