Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia

被引:214
作者
Vicentini, Fernando A. [1 ,2 ,3 ,4 ]
Keenan, Catherine M. [1 ,2 ,4 ]
Wallace, Laurie E. [1 ,2 ,4 ]
Woods, Crystal [5 ]
Cavin, Jean-Baptiste [1 ,2 ,3 ,4 ]
Flockton, Amanda R. [5 ]
Macklin, Wendy B. [6 ]
Belkind-Gerson, Jaime [5 ,7 ]
Hirota, Simon A. [2 ,3 ,4 ,8 ]
Sharkey, Keith A. [1 ,2 ,4 ]
机构
[1] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB T2N 4N1, Canada
[2] Univ Calgary, Snyder Inst Chron Dis, Calgary, AB T2N 4N1, Canada
[3] Univ Calgary, Inflammat Res Network, Calgary, AB T2N 4N1, Canada
[4] Univ Calgary, Cumming Sch Med, Dept Physiol & Pharmacol, 3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada
[5] Univ Colorado, Dept Pediat, Sect Gastroenterol Hepatol & Nutr, Aurora, CO 80045 USA
[6] Univ Colorado, Dept Cell & Dev Biol, Sch Med, Aurora, CO 80045 USA
[7] Childrens Hosp Colorado, Digest Hlth Inst, Neurogastroenterol & Motil Program, Aurora, CO 80045 USA
[8] Univ Calgary, Alberta Childrens Hosp Res Inst, Calgary, AB T2N 4N1, Canada
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Enteric nervous system; Gastrointestinal motility; Short-chain fatty acids; LPS; Enteric glia; Myenteric plexus; Submucosal plexus; CHAIN FATTY-ACIDS; TOLL-LIKE RECEPTORS; NERVOUS-SYSTEM; MUSCULARIS MACROPHAGES; HOST MICROBIOTA; CELLS; NEUROGENESIS; BACTERIA; PERMEABILITY; ANTIBIOTICS;
D O I
10.1186/s40168-021-01165-z
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood. Using a mouse model of antibiotic (Abx)-induced bacterial depletion, we sought to determine the molecular mechanisms of microbial regulation of intestinal function and the integrity of the ENS. Spontaneous reconstitution of the Abx-depleted microbiota was used to assess the plasticity of structure and function of the GI tract and ENS. Microbiotadependent molecular mechanisms of ENS neuronal survival and neurogenesis were also assessed. Results: Adult male and female Abx-treated mice exhibited alterations in GI structure and function, including a longer small intestine, slower transit time, increased carbachol-stimulated ion secretion, and increased intestinal permeability. These alterations were accompanied by the loss of enteric neurons in the ileum and proximal colon in both submucosal and myenteric plexuses. A reduction in the number of enteric glia was only observed in the ileal myenteric plexus. Recovery of the microbiota restored intestinal function and stimulated enteric neurogenesis leading to increases in the number of enteric glia and neurons. Lipopolysaccharide (LPS) supplementation enhanced neuronal survival alongside bacterial depletion, but had no effect on neuronal recovery once the Abx-induced neuronal loss was established. In contrast, short-chain fatty acids (SCFA) were able to restore neuronal numbers after Abx-induced neuronal loss, demonstrating that SCFA stimulate enteric neurogenesis in vivo. Conclusions: Our results demonstrate a role for the gut microbiota in regulating the structure and function of the GI tract in a sex-independent manner. Moreover, the microbiota is essential for the maintenance of ENS integrity, by regulating enteric neuronal survival and promoting neurogenesis. Molecular determinants of the microbiota, LPS and SCFA, regulate enteric neuronal survival, while SCFA also stimulates neurogenesis. Our data reveal new insights into the role of the gut microbiota that could lead to therapeutic developments for the treatment of enteric neuropathies.
引用
收藏
页数:24
相关论文
共 84 条
[1]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[2]   The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J].
Alatab, Sudabeh ;
Sepanlou, Sadaf G. ;
Ikuta, Kevin ;
Vahedi, Homayoon ;
Bisignano, Catherine ;
Safiri, Saeid ;
Sadeghi, Anahita ;
Nixon, Molly R. ;
Abdoli, Amir ;
Abolhassani, Hassan ;
Alipour, Vahid ;
Almadi, Majid A. H. ;
Almasi-Hashiani, Amir ;
Anushiravani, Amir ;
Arabloo, Jalal ;
Atique, Suleman ;
Awasthi, Ashish ;
Badawi, Alaa ;
Baig, Atif A. A. ;
Bhala, Neeraj ;
Bijani, Ali ;
Biondi, Antonio ;
Borzi, Antonio M. ;
Burke, Kristin E. ;
Carvalho, Felix ;
Daryani, Ahmad ;
Dubey, Manisha ;
Eftekhari, Aziz ;
Fernandes, Eduarda ;
Fernandes, Joao C. ;
Fischer, Florian ;
Haj-Mirzaian, Arvin ;
Haj-Mirzaian, Arya ;
Hasanzadeh, Amir ;
Hashemian, Maryam ;
Hay, Simon, I ;
Hoang, Chi L. ;
Househ, Mowafa ;
Ilesanmi, Olayinka S. ;
Balalami, Nader Jafari ;
James, Spencer L. ;
Kengne, Andre P. ;
Malekzadeh, Masoud M. ;
Merat, Shahin ;
Meretoja, Tuomo J. ;
Mestrovic, Tomislav ;
Mirrakhimov, Erkin M. ;
Mirzaei, Hamed ;
Mohammad, Karzan A. ;
Mokdad, Ali H. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (01) :17-30
[3]   Gut Microbial Products Regulate Murine Gastrointestinal Motility via Toll-Like Receptor 4 Signaling [J].
Anitha, Mallappa ;
Vijay-Kumar, Matam ;
Sitaraman, Shanthi V. ;
Gewirtz, Andrew T. ;
Srinivasan, Shanthi .
GASTROENTEROLOGY, 2012, 143 (04) :1006-+
[4]   Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation [J].
Arpaia, Nicholas ;
Campbell, Clarissa ;
Fan, Xiying ;
Dikiy, Stanislav ;
van der Veeken, Joris ;
deRoos, Paul ;
Liu, Hui ;
Cross, Justin R. ;
Pfeffer, Klaus ;
Coffer, Paul J. ;
Rudensky, Alexander Y. .
NATURE, 2013, 504 (7480) :451-+
[5]   Toll-like Receptors 3, 4, and 7 Are Expressed in the Enteric Nervous System and Dorsal Root Ganglia [J].
Barajon, Isabella ;
Serrao, Graziano ;
Arnaboldi, Francesca ;
Opizzi, Emanuela ;
Ripamonti, Gerlomina ;
Balsari, Andrea ;
Rumio, Cristiano .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2009, 57 (11) :1013-1023
[6]   Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract [J].
Barman, Melissa ;
Unold, David ;
Shifley, Kathleen ;
Amir, Elad ;
Hung, Kueichun ;
Bos, Nicolaas ;
Salzman, Nita .
INFECTION AND IMMUNITY, 2008, 76 (03) :907-915
[7]   Nestin-expressing cells in the gut give rise to enteric neurons and glial cells [J].
Belkind-Gerson, J. ;
Carreon-Rodriguez, A. ;
Benedict, L. Andrew ;
Steiger, C. ;
Pieretti, A. ;
Nagy, N. ;
Dietrich, J. ;
Goldstein, A. M. .
NEUROGASTROENTEROLOGY AND MOTILITY, 2013, 25 (01) :61-E7
[8]   Colitis promotes neuronal differentiation of Sox2+and PLP1+enteric cells [J].
Belkind-Gerson, Jaime ;
Graham, Hannah K. ;
Reynolds, Justin ;
Hotta, Ryo ;
Nagy, Nandor ;
Cheng, Lily ;
Kamionek, Michal ;
Shi, Hai Ning ;
Aherne, Carol M. ;
Goldstein, Allan M. .
SCIENTIFIC REPORTS, 2017, 7
[9]   Colitis Induces Enteric Neurogenesis Through a 5-HT4-dependent Mechanism [J].
Belkind-Gerson, Jaime ;
Hotta, Ryo ;
Nagy, Nandor ;
Thomas, Alyssa R. ;
Graham, Hannah ;
Cheng, Lily ;
Solorzano, Juan ;
Nguyen, Deanna ;
Kamionek, Michal ;
Dietrich, Jorg ;
Cherayil, Bobby J. ;
Goldstein, Allan M. .
INFLAMMATORY BOWEL DISEASES, 2015, 21 (04) :870-878
[10]   Intestinal fungi are causally implicated in microbiome assembly and immune development in mice [J].
Bernardes, Erik van Tilburg ;
Pettersen, Veronika Kucharova ;
Gutierrez, Mackenzie W. ;
Laforest-Lapointe, Isabelle ;
Jendzjowsky, Nicholas G. ;
Cavin, Jean-Baptiste ;
Vicentini, Fernando A. ;
Keenan, Catherine M. ;
Ramay, Hena R. ;
Samara, Jumana ;
MacNaughton, Wallace K. ;
Wilson, Richard J. A. ;
Kelly, Margaret M. ;
McCoy, Kathy D. ;
Sharkey, Keith A. ;
Arrieta, Marie-Claire .
NATURE COMMUNICATIONS, 2020, 11 (01)