Spectral Imagery Tensor Decomposition for Semantic Segmentation of Remote Sensing Data through Fully Convolutional Networks

被引:8
作者
Lopez, Josue [1 ]
Torres, Deni [1 ]
Santos, Stewart [2 ]
Atzberger, Clement [3 ]
机构
[1] Natl Polytech Inst, Ctr Res & Adv Studies, Telecommun Grp, Av Bosque 1145, Zapopan 45017, Mexico
[2] Univ Guadalajara, Ctr Exact Sci & Engn, Blvd Gral Marcelino Garcia Barragan 1421, Guadalajara 44430, Jalisco, Mexico
[3] Univ Nat Resources & Life Sci, Inst Geomat, Peter Jordan 82, A-1180 Vienna, Austria
关键词
fully convolutional network; semantic segmentation; spectral image; tensor decomposition; CLASSIFICATION;
D O I
10.3390/rs12030517
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work aims at addressing two issues simultaneously: data compression at input space and semantic segmentation. Semantic segmentation of remotely sensed multi- or hyperspectral images through deep learning (DL) artificial neural networks (ANN) delivers as output the corresponding matrix of pixels classified elementwise, achieving competitive performance metrics. With technological progress, current remote sensing (RS) sensors have more spectral bands and higher spatial resolution than before, which means a greater number of pixels in the same area. Nevertheless, the more spectral bands and the greater number of pixels, the higher the computational complexity and the longer the processing times. Therefore, without dimensionality reduction, the classification task is challenging, particularly if large areas have to be processed. To solve this problem, our approach maps an RS-image or third-order tensor into a core tensor, representative of our input image, with the same spatial domain but with a lower number of new tensor bands using a Tucker decomposition (TKD). Then, a new input space with reduced dimensionality is built. To find the core tensor, the higher-order orthogonal iteration (HOOI) algorithm is used. A fully convolutional network (FCN) is employed afterwards to classify at the pixel domain, each core tensor. The whole framework, called here HOOI-FCN, achieves high performance metrics competitive with some RS-multispectral images (MSI) semantic segmentation state-of-the-art methods, while significantly reducing computational complexity, and thereby, processing time. We used a Sentinel-2 image data set from Central Europe as a case study, for which our framework outperformed other methods (included the FCN itself) with average pixel accuracy (PA) of 90% (computational time similar to 90s) and nine spectral bands, achieving a higher average PA of 91.97% (computational time similar to 36.5s), and average PA of 91.56% (computational time similar to 9.5s) for seven and five new tensor bands, respectively.
引用
收藏
页数:21
相关论文
共 35 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   Tensor Discriminant Analysis via Compact Feature Representation for Hyperspectral Images Dimensionality Reduction [J].
An, Jinliang ;
Song, Yuzhen ;
Guo, Yuwei ;
Ma, Xiaoxiao ;
Zhang, Xiangrong .
REMOTE SENSING, 2019, 11 (15)
[3]   Tensor Based Multiscale Low Rank Decomposition for Hyperspectral Images Dimensionality Reduction [J].
An, Jinliang ;
Lei, Jinhui ;
Song, Yuzhen ;
Zhang, Xiangrong ;
Guo, Jinmei .
REMOTE SENSING, 2019, 11 (12)
[4]  
[Anonymous], 2017, CORR
[5]  
Astrid M, 2017, INT CONF BIG DATA, P115, DOI 10.1109/BIGCOMP.2017.7881725
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Tensor-Factorized Neural Networks [J].
Chien, Jen-Tzung ;
Bao, Yi-Ting .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) :1998-2011
[8]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[9]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[10]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342