Bayesian inference of natural selection from spatiotemporal phenotypic data
被引:3
作者:
David, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, FranceUniv Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, France
David, Olivier
[1
]
van Frank, Gaelle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Paris Sud, AgroParisTech, CNRS,INRA,Genet Quantitat & Evolut Le Moulon, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, France
van Frank, Gaelle
[2
]
Goldringer, Isabelle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Paris Sud, AgroParisTech, CNRS,INRA,Genet Quantitat & Evolut Le Moulon, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, France
Goldringer, Isabelle
[2
]
Riviere, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Reseau Semences Paysannes, F-47190 Aiguillon, FranceUniv Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, France
Riviere, Pierre
[3
]
Delof, Michel Turbet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Paris Sud, AgroParisTech, CNRS,INRA,Genet Quantitat & Evolut Le Moulon, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, France
Delof, Michel Turbet
[2
]
机构:
[1] Univ Paris Saclay, INRA, MaIAGE, F-78350 Jouy En Josas, France
[2] Univ Paris Saclay, Univ Paris Sud, AgroParisTech, CNRS,INRA,Genet Quantitat & Evolut Le Moulon, F-91190 Gif Sur Yvette, France
[3] Reseau Semences Paysannes, F-47190 Aiguillon, France
Spatiotemporal variations of natural selection may influence the evolution of various features of organisms such as local adaptation or specialisation. This article develops a method for inferring how selection varies between locations and between generations from phenotypic data. It is assumed that generations are non-overlapping and that individuals reproduce by selfing or asexually. A quantitative genetics model taking account of the effects of stabilising natural selection, the environment and mutation on phenotypic means and variances is developed. Explicit results on the evolution of populations are derived and used to develop a Bayesian inference method. The latter is applied to simulated data and to data from a wheat participatory plant breeding programme. It has some ability to infer evolutionary parameters, but estimates may be sensitive to prior distributions, for example when phenotypic time series are short and when environmental effects are large. In such cases, sensitivity to prior distributions may be reported or more data may be collected. (C) 2019 Elsevier Inc. All rights reserved.