Optimal convergence behavior of adaptive FEM driven by simple (h - h/2)-type error estimators

被引:11
作者
Erath, Christoph [1 ]
Gantner, Gregor [2 ]
Praetorius, Dirk [2 ]
机构
[1] Tech Univ Darmstadt, Dept Math, Dolivostr 15, D-64293 Darmstadt, Germany
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-E101-4, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Finite element method; A posteriori error estimators; Adaptive algorithm; Local mesh-refinement; Optimal convergence rates; DATA OSCILLATION;
D O I
10.1016/j.camwa.2019.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For some Poisson-type model problem, we prove that adaptive FEM driven by the (h - h/2)-type error estimators from Ferraz-Leite et al. (2010) leads to convergence with optimal algebraic convergence rates. Besides the implementational simplicity, another striking feature of these estimators is that they can provide guaranteed lower bounds for the energy error with known efficiency constant 1. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:623 / 642
页数:20
相关论文
共 20 条
  • [1] Ainsworth M., 2000, PURE APPL MATH
  • [2] Bank R. E., 1996, Acta Numerica, V5, P1, DOI 10.1017/S0962492900002610
  • [3] A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES
    BANK, RE
    SMITH, RK
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) : 921 - 935
  • [4] BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
  • [5] A posteriori error estimates for elliptic problems in two and three space dimensions
    Bornemann, FA
    Erdmann, B
    Kornhuber, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) : 1188 - 1204
  • [6] Axioms of adaptivity
    Carstensen, C.
    Feischl, M.
    Page, M.
    Praetorius, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1195 - 1253
  • [7] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [8] Small data oscillation implies the saturation assumption
    Dörfler, W
    Nochetto, RH
    [J]. NUMERISCHE MATHEMATIK, 2002, 91 (01) : 1 - 12
  • [9] A convergent adaptive algorithm for Poisson's equation
    Dorfler, W
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) : 1106 - 1124
  • [10] ADAPTIVE FEM WITH OPTIMAL CONVERGENCE RATES FOR A CERTAIN CLASS OF NONSYMMETRIC AND POSSIBLY NONLINEAR PROBLEMS
    Feischl, M.
    Fuehrer, T.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 601 - 625