Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.)

被引:29
|
作者
Huang, Lu [1 ]
Wang, Xun [2 ]
Chi, Yihan [1 ]
Huang, Linan [1 ]
Li, Wai Chin [3 ]
Ye, Zhihong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, Guangzhou 510006, Peoples R China
[2] South China Agr Univ, Coll Marine Sci, Guangzhou 510642, Peoples R China
[3] Educ Univ Hong Kong, Dept Sci & Environm Studies, Hong Kong, Peoples R China
关键词
Arsenic; Cadmium; Rhizosphere; Rice(Oryza sativa L; Soil bacterial community; IRON-PLAQUE-FORMATION; WATER MANAGEMENT IMPACTS; PADDY SOILS; HEAVY-METAL; AGRICULTURAL SOILS; REDUCING BACTERIA; CD; IMMOBILIZATION; CONTAMINATION; SPECIATION;
D O I
10.1016/j.ecoenv.2021.112474
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cadmium (Cd) and arsenic (As) contamination in paddy soils poses serious health risks to humans. The accumulation of Cd and As in rice (Oryza sativa L.) depends on their bioavailability, which is affected by soil physicochemical properties and soil microbial activities. However, little is known about the intricate interplay between rice plants and their rhizosphere microbes during the uptake of Cd and As. In this study, different bacterial communities were established by sterilizing paddy soils with gamma-radiation. A pot experiment using two paddy soils with different levels of contamination was conducted to explore how the bacterial community composition affects Cd and As accumulation in rice plants. The results showed that the sterilization treatment substantially changed the bacterial composition in the rhizosphere, and significantly increased the grain yield (by 33.5-38.3%). The sterilization treatment resulted in significantly decreased concentrations of Cd (by 18.2-38.7%) and As (by 20.3-36.7%) in the grain, straw, and root of rice plants. The accumulation of Cd and As in rice plants was negatively correlated with the relative abundance of sulfate-reducing bacteria and ironoxidizing bacteria in the rhizosphere. Other specific taxa associated with the accumulation of Cd and As in rice plants were also identified. Our results suggest that regulating the composition of the rhizosphere bacterial community could simultaneously reduce Cd and As accumulation in rice grain and increase the grain yield. These results would be useful for developing strategies to cultivate safe rice crops in areas contaminated with Cd and As.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effect of selenium on cadmium uptake, translocation and accumulation in rice (Oryza sativa L.)
    Li, H. F.
    Wan, Y. N.
    Wang, Q.
    Yu, Y.
    SELENIUM RESEARCH FOR ENVIRONMENT AND HUMAN HEALTH: PERSPECTIVES, TECHNOLOGIES AND ADVANCEMENTS, 2020, : 135 - 136
  • [22] Root system architecture influencing cadmium accumulation in rice (Oryza sativa L.)
    Meeinkuirt, Weeradej
    Phusantisampan, Theerawut
    Saengwilai, Patompong
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2019, 21 (01) : 19 - 26
  • [23] Mechanisms of chloride to promote the uptake and accumulation of cadmium in rice (Oryza sativa L.)
    Guo, Jingxia
    Ge, Chenghao
    Wang, Guo
    Zhou, Dongmei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 926
  • [24] Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.)
    Jiang, Shuli
    Shi, Chunhai
    Wu, Jianguo
    INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2012, 63 (04) : 468 - 475
  • [25] Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse
    Ming Lei
    Baiqing Tie
    Paul N. Williams
    Yuanming Zheng
    Yizong Huang
    Journal of Soils and Sediments, 2011, 11 : 115 - 123
  • [26] Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh
    Panaullah, Golam M.
    Alam, Tariqul
    Hossain, M. Baktear
    Loeppert, Richard H.
    Lauren, Julie G.
    Meisner, Craig A.
    Ahmed, Zia U.
    Duxbury, John M.
    PLANT AND SOIL, 2009, 317 (1-2) : 31 - 39
  • [27] Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh
    Golam M. Panaullah
    Tariqul Alam
    M. Baktear Hossain
    Richard H. Loeppert
    Julie G. Lauren
    Craig A. Meisner
    Zia U. Ahmed
    John M. Duxbury
    Plant and Soil, 2009, 317 : 31 - 39
  • [28] Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse
    Lei, Ming
    Tie, Baiqing
    Williams, Paul N.
    Zheng, Yuanming
    Huang, Yizong
    JOURNAL OF SOILS AND SEDIMENTS, 2011, 11 (01) : 115 - 123
  • [29] Simultaneous reduction in cadmium and arsenic accumulation in rice (Oryza sativa L.) by iron/iron-manganese modified sepiolite
    Zhou, Sijiang
    Liu, Zhenyan
    Sun, Gang
    Zhang, Qingya
    Cao, Menghua
    Tu, Shuxin
    Xiong, Shuanglian
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 810
  • [30] Simultaneous reduction in cadmium and arsenic accumulation in rice (Oryza sativa L.) by iron/iron-manganese modified sepiolite
    Zhou, Sijiang
    Liu, Zhenyan
    Sun, Gang
    Zhang, Qingya
    Cao, Menghua
    Tu, Shuxin
    Xiong, Shuanglian
    Science of the Total Environment, 2022, 810