Evolving spatial conservation prioritization with intraspecific genetic data

被引:34
作者
Andrello, Marco [1 ]
D'Aloia, Cassidy [2 ]
Dalongeville, Alicia [3 ]
Escalante, Marco A. [4 ]
Guerrero, Jimena [5 ]
Perrier, Charles [6 ]
Torres-Florez, Juan Pablo [7 ]
Xuereb, Amanda [8 ]
Manel, Stephanie [9 ]
机构
[1] CNR, CNR IAS, Inst Study Anthrop Impacts & Sustainabil Marine E, Rome, Italy
[2] Univ Toronto Mississauga, Dept Biol, Mississauga, ON, Canada
[3] Univ Montpellier, Ifremer, CNRS, MARBEC,IRD, Montpellier, France
[4] Czech Acad Sci, Lab Mol Ecol, Inst Anim Physiol & Genet, Libechov, Czech Republic
[5] Soc Cient Invest Transdisciplinaria & Especializa, Calimaya, Mexico
[6] Univ Montpellier, Montpellier SupAgro, CIRAD, CBGP,INRAe,IRD, Montpellier, France
[7] Ctr Nacl Pesquisa & Conservacao Mamiferos Aquat, Inst Chico Mendes Conservacao Biodiversidade, Santos, SP, Brazil
[8] Univ Laval, Inst Biol Integrat & Syst IBIS, Dept Biol, Quebec City, PQ, Canada
[9] Univ Montpellier, EPHE PSL Univ, CNRS, CEFE,IRD, Montpellier, France
关键词
DIVERSITY; CONNECTIVITY; POPULATIONS; BIODIVERSITY; VARIABILITY; SURROGATES; SELECTION; NETWORKS; RESERVES; REGIONS;
D O I
10.1016/j.tree.2022.03.003
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Spatial conservation prioritization (SCP) is a planning framework used to identify new conservation areas on the basis of the spatial distribution of species, ecosystems, and their services to human societies. The ongoing accumulation of intraspecific genetic data on a variety of species offers a way to gain knowledge of intraspecific genetic diversity and to estimate several population characteristics useful in conservation, such as dispersal and population size. Here, we review how intraspecific genetic data have been integrated into SCP and highlight their potential for identifying conservation area networks that represent intraspecific genetic diversity comprehensively and that ensure the long-term persistence of biodiversity in the face of global change.
引用
收藏
页码:553 / 564
页数:12
相关论文
共 103 条
  • [1] Almond R.E.A., 2020, Living planet report 2020 - bending the curve of biodiversity loss
  • [2] [Anonymous], ECOL LETT, V18, P1
  • [3] [Anonymous], 2009, CONSERVATION PRIORIT
  • [4] The current application of ecological connectivity in the design of marine protected areas
    Balbar, Arieanna C.
    Metaxas, Anna
    [J]. GLOBAL ECOLOGY AND CONSERVATION, 2019, 17
  • [5] Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors
    Barbosa, Soraia
    Mestre, Frederico
    White, Thomas A.
    Pauperio, Joana
    Alves, Paulo C.
    Searle, Jeremy B.
    [J]. MOLECULAR ECOLOGY, 2018, 27 (17) : 3452 - 3465
  • [6] Evolving coral reef conservation with genetic information
    Beger, Maria
    Selkoe, Kimberly A.
    Treml, Eric
    Barber, Paul H.
    von der Heyden, Sophie
    Crandall, Eric D.
    Toonen, Robert J.
    Riginos, Cynthia
    [J]. BULLETIN OF MARINE SCIENCE, 2014, 90 (01) : 159 - 185
  • [7] Incorporating asymmetric connectivity into spatial decision making for conservation
    Beger, Maria
    Linke, Simon
    Watts, Matt
    Game, Eddie
    Treml, Eric
    Ball, Ian
    Possingham, Hugh P.
    [J]. CONSERVATION LETTERS, 2010, 3 (05): : 359 - 368
  • [8] Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation
    Bonin, Aurelie
    Nicole, Florence
    Pompanon, Francois
    Miaud, Claude
    Taberlet, Pierre
    [J]. CONSERVATION BIOLOGY, 2007, 21 (03) : 697 - 708
  • [9] Close-Kin Mark-Recapture
    Bravington, Mark V.
    Skaug, Hans J.
    Anderson, Eric C.
    [J]. STATISTICAL SCIENCE, 2016, 31 (02) : 259 - 274
  • [10] A new framework of spatial targeting for single-species conservation planning
    Burgess, Malcolm
    Gregory, Richard
    Wilson, Jeremy
    Gillings, Simon
    Evans, Andy
    Chisholm, Kenna
    Southern, Adrian
    Eaton, Mark
    [J]. LANDSCAPE ECOLOGY, 2019, 34 (12) : 2765 - 2778