Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:38
作者
Chen, Sitong [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
基金
中国国家自然科学基金;
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; L-2-supercritical growth; L-2-subcritical growth; SCHRODINGER-POISSON; PRESCRIBED L-2-NORM; NODAL SOLUTIONS; EXISTENCE; WAVES; NORM;
D O I
10.1007/s00245-020-09661-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation {-(a + b integral(R3) vertical bar del u vertical bar(2)dx) Delta u - lambda u = K(x) f(u), x is an element of R-3; u is an element of H-1(R-3) where a, b > 0, lambda is unknown and appears as a Lagrange multiplier, K is an element of C(R-3, R+) with 0 < lim(vertical bar y vertical bar ->infinity) K(y) <= inf(R3) K, and f is an element of C(R, R) satisfies general L-2-supercritical or L-2-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L-2-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:34
相关论文
共 50 条