Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:38
作者
Chen, Sitong [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
基金
中国国家自然科学基金;
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; L-2-supercritical growth; L-2-subcritical growth; SCHRODINGER-POISSON; PRESCRIBED L-2-NORM; NODAL SOLUTIONS; EXISTENCE; WAVES; NORM;
D O I
10.1007/s00245-020-09661-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation {-(a + b integral(R3) vertical bar del u vertical bar(2)dx) Delta u - lambda u = K(x) f(u), x is an element of R-3; u is an element of H-1(R-3) where a, b > 0, lambda is unknown and appears as a Lagrange multiplier, K is an element of C(R-3, R+) with 0 < lim(vertical bar y vertical bar ->infinity) K(y) <= inf(R3) K, and f is an element of C(R, R) satisfies general L-2-supercritical or L-2-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L-2-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:34
相关论文
共 50 条
  • [31] Remarks on Normalized Solutions for L2-Critical Kirchhoff Problems
    Zeng, Yonglong
    Chen, Kuisheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (03): : 617 - 627
  • [32] Wave equations with super-critical interior and boundary nonlinearities
    Bociu, Lorena
    Rammaha, Mohammad
    Toundykov, Daniel
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) : 1017 - 1029
  • [33] The existence of normalized solutions for L 2-critical constrained problems related to Kirchhoff equations
    Ye, Hongyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1483 - 1497
  • [34] Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold
    Sitong Chen
    Xianhua Tang
    The Journal of Geometric Analysis, 2020, 30 : 1637 - 1660
  • [35] Normalized ground states for a kind of Choquard-Kirchhoff equations with critical nonlinearities
    Fei, Jiayi
    Zhang, Qiongfen
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [36] Normalized solution to the Schrodinger equation with potential and general nonlinear term: Mass super-critical case
    Ding, Yanheng
    Zhong, Xuexiu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 334 : 194 - 215
  • [37] Normalized multi-bump solutions of nonlinear Kirchhoff equations
    Shu, Zhidan
    Zhang, Jianjun
    AIMS MATHEMATICS, 2024, 9 (06): : 16790 - 16809
  • [38] Normalized solutions for nonlinear Kirchhoff type equations in high dimensions
    Kong, Lingzheng
    Chen, Haibo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1282 - 1295
  • [39] Normalized solutions to the Kirchhoff Equation with triple critical exponents in R4
    Fang, Xingling
    Ou, Zengqi
    Lv, Ying
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [40] 2.5D formulation and analysis of a half-space subjected to internal loads moving at sub- and super-critical speeds
    Yang, Y. B.
    Li, P. L.
    Chen, W.
    Li, J.
    Wu, Y. T.
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2021, 142