Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases

被引:38
|
作者
Chen, Sitong [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
基金
中国国家自然科学基金;
关键词
Kirchhoff problem; Normalized solution; Concentration-compactness; Indefinite potential; L-2-supercritical growth; L-2-subcritical growth; SCHRODINGER-POISSON; PRESCRIBED L-2-NORM; NODAL SOLUTIONS; EXISTENCE; WAVES; NORM;
D O I
10.1007/s00245-020-09661-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation {-(a + b integral(R3) vertical bar del u vertical bar(2)dx) Delta u - lambda u = K(x) f(u), x is an element of R-3; u is an element of H-1(R-3) where a, b > 0, lambda is unknown and appears as a Lagrange multiplier, K is an element of C(R-3, R+) with 0 < lim(vertical bar y vertical bar ->infinity) K(y) <= inf(R3) K, and f is an element of C(R, R) satisfies general L-2-supercritical or L-2-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed L-2-norm solutions of Kirchhoff problems.
引用
收藏
页码:773 / 806
页数:34
相关论文
共 50 条
  • [1] Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases
    Sitong Chen
    Vicenţiu D. Rădulescu
    Xianhua Tang
    Applied Mathematics & Optimization, 2021, 84 : 773 - 806
  • [2] NORMALIZED SOLUTIONS OF THE AUTONOMOUS KIRCHHOFF EQUATION WITH SOBOLEV CRITICAL EXPONENT: SUB- AND SUPER-CRITICAL CASES
    LI, Quangqing
    Radulescu, Vicentiu D.
    Zhang, Jian
    Zhao, X. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 663 - 678
  • [3] Normalized Solutions to the Kirchhoff Equation with Potential Term: Mass Super-Critical Case
    Wang, Qun
    Qian, Aixia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [4] Normalized solutions to nonautonomous Kirchhoff equation
    Qiu, Xin
    Ou, Zeng Qi
    Lv, Ying
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 457 - 486
  • [5] Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent
    Li, Gongbao
    Luo, Xiao
    Yang, Tao
    ANNALES FENNICI MATHEMATICI, 2022, 47 (02): : 895 - 925
  • [6] Normalized solutions for critical growth Schriodinger equations with nonautonomous perturbation
    Fan, Song
    Long, Chun-Fei
    Xu, Qin
    Li, Gui-Dong
    APPLIED MATHEMATICS LETTERS, 2024, 149
  • [7] Normalized solutions for the general Kirchhoff type equations
    Liu, Wenmin
    Zhong, Xuexiu
    Zhou, Jinfang
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1886 - 1902
  • [8] Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
    Yuan, Shuai
    Gao, Yuning
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 271 - 294
  • [9] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Luo, Huxiao
    Wang, Lushun
    FRONTIERS OF MATHEMATICS, 2023, 18 (06): : 1269 - 1294
  • [10] Normalized Solutions for Nonautonomous Schrodinger Equations on a Suitable Manifold
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1637 - 1660