Brownian Motion of Stiff Filaments in a Crowded Environment

被引:124
作者
Fakhri, Nikta [1 ]
MacKintosh, Frederick C. [2 ]
Lounis, Brahim [3 ]
Cognet, Laurent [3 ]
Pasquali, Matteo [1 ]
机构
[1] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Dept Chem, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[3] Univ Bordeaux, CNRS, Ctr Phys Mol Opt & Hertzienne, F-33405 Talence, France
基金
欧洲研究理事会;
关键词
WALLED CARBON NANOTUBES; SEMIFLEXIBLE POLYMERS; AGAROSE GELS; DYNAMICS; DIFFUSION; MICROSCOPY; CHAIN; FLUORESCENCE; REPTATION; ROD;
D O I
10.1126/science.1197321
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The thermal motion of stiff filaments in a crowded environment is highly constrained and anisotropic; it underlies the behavior of such disparate systems as polymer materials, nanocomposites, and the cell cytoskeleton. Despite decades of theoretical study, the fundamental dynamics of such systems remains a mystery. Using near-infrared video microscopy, we studied the thermal diffusion of individual single-walled carbon nanotubes (SWNTs) confined in porous agarose networks. We found that even a small bending flexibility of SWNTs strongly enhances their motion: The rotational diffusion constant is proportional to the filament-bending compliance and is independent of the network pore size. The interplay between crowding and thermal bending implies that the notion of a filament's stiffness depends on its confinement. Moreover, the mobility of SWNTs and other inclusions can be controlled by tailoring their stiffness.
引用
收藏
页码:1804 / 1807
页数:4
相关论文
共 27 条
[1]   ELECTRON-MICROSCOPY OF BEADED AGAROSE GELS [J].
ATTWOOD, TK ;
NELMES, BJ ;
SELLEN, DB .
BIOPOLYMERS, 1988, 27 (02) :201-212
[2]   Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions [J].
Cognet, Laurent ;
Tsyboulski, Dmitri A. ;
Rocha, John-David R. ;
Doyle, Condell D. ;
Tour, James M. ;
Weisman, R. Bruce .
SCIENCE, 2007, 316 (5830) :1465-1468
[3]   REPTATION OF A POLYMER CHAIN IN PRESENCE OF FIXED OBSTACLES [J].
DEGENNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (02) :572-+
[4]   Elongation and fluctuations of semiflexible polymers in a nematic solvent [J].
Dogic, Z ;
Zhang, J ;
Lau, AWC ;
Aranda-Espinoza, H ;
Dalhaimer, P ;
Discher, DE ;
Janmey, PA ;
Kamien, RD ;
Lubensky, TC ;
Yodh, AG .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :125503-1
[5]  
DOI M, 1985, J POLYM SCI POL SYM, P93
[6]  
DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1789, DOI 10.1039/f29787401789
[7]  
Doi M., 1986, THEORY POLYM DYNAMIC
[8]   Dynamics of individual single-walled carbon nanotubes in water by real-time visualization [J].
Duggal, Rajat ;
Pasquali, Matteo .
PHYSICAL REVIEW LETTERS, 2006, 96 (24)
[9]   Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments [J].
Duque, Juan G. ;
Cognet, Laurent ;
Parra-Vasquez, A. Nicholas G. ;
Nicholas, Nolan ;
Schmidt, Howard K. ;
Pasquali, Matteo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (08) :2626-2633
[10]  
EDWARDS SF, 1967, P PHYS SOC LOND, V92, pR1