Design of Lanthanide Fingers: Compact Lanthanide-Binding Metalloproteins

被引:22
|
作者
Ende, Christopher W. Am [1 ]
Meng, Hai Yun [1 ]
Ye, Mao [1 ]
Pandey, Anil K. [1 ]
Zondlo, Neal J. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
lanthanides; luminescence; peptides; protein design; protein folding; RESIDUAL DIPOLAR COUPLINGS; HELIX-FORMING TENDENCIES; KINASE-INDUCIBLE DOMAIN; EF-HAND PROTEINS; DE-NOVO DESIGN; ALPHA-HELIX; CALCIUM-BINDING; AMINO-ACIDS; METAL-BINDING; SECONDARY STRUCTURE;
D O I
10.1002/cbic.201000056
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high a-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9 3 mu M for binding Er3-. CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide
引用
收藏
页码:1738 / 1747
页数:10
相关论文
共 50 条
  • [21] Reprogramming EF-hands for design of catalytically amplified lanthanide sensors
    Mack, Korrie L.
    Moroz, Olesia V.
    Moroz, Yurii S.
    Olsen, Alissa B.
    McLaughlin, Jaclyn M.
    Korendovych, Ivan V.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2013, 18 (04): : 411 - 418
  • [22] Coordination to lanthanide ions distorts binding site conformation in calmodulin
    Edington, Sean C.
    Gonzalez, Andrea
    Middendorf, Thomas R.
    Halling, D. Brent
    Aldrich, Richard W.
    Baiz, Carlos R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (14) : E3126 - E3134
  • [23] On the design of highly luminescent lanthanide complexes
    Buenzli, Jean-Claude G.
    COORDINATION CHEMISTRY REVIEWS, 2015, 293 : 19 - 47
  • [24] Breaking Pseudo-Symmetry in Multiantennary Complex N-Glycans Using Lanthanide-Binding Tags and NMR Pseudo-Contact Shifts
    Canales, Angeles
    Mallagaray, Alvaro
    Perez-Castells, Javier
    Boos, Irene
    Unverzagt, Carlo
    Andre, Sadine
    Gabius, Hans-Joachim
    Canada, Francisco Javier
    Jimenez-Barbero, Jesus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (51) : 13789 - 13793
  • [25] The impact of structural variation in simple lanthanide binding peptides
    Veliscek-Carolan, Jessica
    Hanley, Tracey L.
    Jolliffe, Katrina A.
    RSC ADVANCES, 2016, 6 (79): : 75336 - 75346
  • [26] Quantum chemistry benchmarking of binding and selectivity for lanthanide extractants
    Minh Nguyen Vo
    Bryantsev, Vyacheslav S.
    Johnson, J. Karl
    Keith, John A.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (07)
  • [27] An Iminodiacetic Acid Based Lanthanide Binding Tag for Paramagnetic Exchange NMR Spectroscopy
    Swarbrick, James D.
    Ung, Phuc
    Chhabra, Sandeep
    Graham, Bim
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (19) : 4403 - 4406
  • [28] Using Remote Substituents to Control Solution Structure and Anion Binding in Lanthanide Complexes
    Tropiano, Manuel
    Blackburn, Octavia A.
    Tilney, James A.
    Hill, Leila R.
    Placidi, Matteo P.
    Aarons, Rebecca J.
    Sykes, Daniel
    Jones, Michael W.
    Kenwright, Alan M.
    Snaith, John S.
    Sorensen, Thomas Just
    Faulkner, Stephen
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (49) : 16566 - 16571
  • [29] Reprogramming EF-hands for design of catalytically amplified lanthanide sensors
    Korrie L. Mack
    Olesia V. Moroz
    Yurii S. Moroz
    Alissa B. Olsen
    Jaclyn M. McLaughlin
    Ivan V. Korendovych
    JBIC Journal of Biological Inorganic Chemistry, 2013, 18 : 411 - 418
  • [30] Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding
    Samiappan, Manickasundaram
    Alasibi, Samaa
    Cohen-Luria, Rivka
    Shanzer, Abraham
    Ashkenasy, Gonen
    CHEMICAL COMMUNICATIONS, 2012, 48 (77) : 9577 - 9579