Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals

被引:33
作者
Matsunaga, Tetsuya [1 ]
Kameyama, Tatsuya [1 ]
Ueda, Shouji [1 ]
Sato, Eiichi [1 ]
机构
[1] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Kanagawa, Japan
关键词
grain boundary sliding; ambient temperature creep; hexagonal close-packed structure; ROOM-TEMPERATURE; ZINC BICRYSTALS; TITANIUM-ALLOYS; DEFORMATION; TI; MECHANISM; STRESSES; FLOW;
D O I
10.1080/14786435.2010.502883
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Even at ambient temperature or less, below their 0.2% proof stresses all hexagonal close-packed metals and alloys show creep behaviour because they have dislocation arrays lying on a single slip system with no tangled dislocation inside each grain. In this case, lattice dislocations move without obstacles and pile-up in front of a grain boundary. Then these dislocations must be accommodated at the grain boundary to continue creep deformation. Atomic force microscopy revealed the occurrence of grain boundary sliding (GBS) in the ambient-temperature creep region. Lattice rotation of 5 degrees was observed near grain boundaries by electron backscatter diffraction pattern analyses. Because of an extra low apparent activation energy of 20 kJ/mol, conventional diffusion processes are not activated. To accommodate these piled-up dislocations without diffusion processes, lattice dislocations must be absorbed by grain boundaries through a slip-induced GBS mechanism.
引用
收藏
页码:4041 / 4054
页数:14
相关论文
共 39 条
[21]   Constitutive Relation for Ambient-Temperature Creep in Hexagonal Close-Packed Metals [J].
Matsunaga, Tetsuya ;
Kameyama, Tatsuya ;
Takahashi, Kohei ;
Sato, Eiichi .
MATERIALS TRANSACTIONS, 2009, 50 (12) :2858-2864
[22]   Intragranular Deformation Mechanisms during Ambient-Temperature Creep in Hexagonal Close-Packed Metals [J].
Matsunaga, Tetsuya ;
Kameyama, Tatsuya ;
Takahashi, Kohei ;
Sato, Eiichi .
MATERIALS TRANSACTIONS, 2009, 50 (12) :2865-2872
[23]  
MUSSOT P, 1985, RES MECH, V14, P69
[24]   Phenonomenological and microstructural analysis of room temperature creep in titanium alloys [J].
Neeraj, T ;
Hou, DH ;
Daehn, GS ;
Mills, MJ .
ACTA MATERIALIA, 2000, 48 (06) :1225-1238
[25]   The effect of time-dependent twinning on low temperature (<0.25*Tm) creep of an alpha-titanium alloy [J].
Oberson, P. G. ;
Ankem, S. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (05) :881-900
[26]   LOW-TEMPERATURE CREEP OF TI-6 AL-4 V [J].
ODEGARD, BC ;
THOMPSON, AW .
METALLURGICAL TRANSACTIONS, 1974, 5 (05) :1207-1213
[27]   For crystal plasticity. II [J].
Orowan, E. .
ZEITSCHRIFT FUR PHYSIK, 1934, 89 (9-10) :614-633
[28]  
RAE CMF, 1980, PHILOS MAG A, V41, P447
[29]   Superplastic titanium tanks for propulsion system of satellites [J].
Sato, E. ;
Sawai, S. ;
Uesugi, K. ;
Takami, T. ;
Furukawa, K. ;
Kamada, M. ;
Kondo, M. .
SUPERPLASTICITY IN ADVANCED MATERIALS, 2007, 551-552 :43-+
[30]   QUANTITATIVE OBSERVATION OF MISFIT DISLOCATION ARRAYS IN LOW AND HIGH ANGLE TWIST GRAIN BOUNDARIES [J].
SCHOBER, T ;
BALLUFFI, RW .
PHILOSOPHICAL MAGAZINE, 1970, 21 (169) :109-&