Plasma Metabolomics to Identify and Stratify Patients With Impaired Glucose Tolerance

被引:17
作者
Wildberg, Charlotte [1 ]
Masuch, Annette [1 ]
Budde, Kathrin [1 ,2 ]
Kastenmueller, Gabi [3 ]
Artati, Anna [4 ]
Rathmann, Wolfgang [5 ]
Adamski, Jerzy [4 ,6 ,7 ]
Kocher, Thomas [8 ]
Voelzke, Henry [2 ,9 ,10 ]
Nauck, Matthias [1 ,2 ]
Friedrich, Nele [1 ,2 ]
Pietzner, Maik [1 ,2 ]
机构
[1] Univ Med Greifswald, Inst Clin Chem & Lab Med, Ferdinand Sauerbruch Str, D-17475 Greifswald, Germany
[2] German Ctr Cardiovasc Res, Partner Site Greifswald, D-17475 Greifswald, Germany
[3] Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, D-85764 Neuherberg, Germany
[4] Helmholtz Zentrum Munchen, Genome Anal Ctr, Inst Expt Genet, D-85764 Neuherberg, Germany
[5] Heinrich Heine Univ Dusseldorf, Leibniz Ctr Diabet Res, German Diabet Ctr, Inst Biometr & Epidemiol, D-40225 Dusseldorf, Germany
[6] Tech Univ Munich, Lehrstuhl Expt Genet, D-85354 Freising Weihenstephan, Germany
[7] German Ctr Diabet Res, D-85764 Neuherberg, Germany
[8] Univ Med Greifswald, Dent Sch, Dept Restorat Dent Periodontol Endodontol & Pedia, Unit Periodontol, D-17475 Greifswald, Germany
[9] Univ Med Greifswald, Inst Community Med, D-17475 Greifswald, Germany
[10] German Ctr Diabet Res, Site Greifswald, D-17475 Greifswald, Germany
关键词
CHOLESTERYL ESTER TRANSFER; CHAIN AMINO-ACIDS; INSULIN-RESISTANCE; DIABETES-MELLITUS; RISK; ASSOCIATION; BIOMARKERS; MARKERS; PROTEIN; IMPACT;
D O I
10.1210/jc.2019-01104
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Impaired glucose tolerance (IGT) is one of the presymptomatic states of type 2 diabetes mellitus and requires an oral glucose tolerance test (OGTT) for diagnosis. Our aims were twofold: (i) characterize signatures of small molecules predicting the OGTT response and (ii) identify metabolic subgroups of participants with IGT. Methods: Plasma samples from 827 participants of the Study of Health in Pomerania free of diabetes were measured using mass spectrometry and proton-nuclear magnetic resonance spectroscopy. Linear regression analyses were used to screen for metabolites significantly associated with the OGTT response after 2 hours, adjusting for baseline glucose and insulin levels as well as important confounders. A signature predictive for IGT was established using regularized logistic regression. All cases with IGT (N = 159) were selected and subjected to unsupervised clustering using a k-means approach. Results and Conclusion: In total, 99 metabolites and 22 lipoprotein measures were significantly associated with either 2-hour glucose or 2-hour insulin levels. Those comprised variations in baseline concentrations of branched-chain amino ketoacids, acylcarnitines, lysophospholipids, or phosphatidylcholines, largely confirming previous studies. By the use of these metabolites, subjects with IGT segregated into two distinct groups. Our IGT prediction model combining both clinical and metabolomics traits achieved an area under the curve of 0.84, slightly improving the prediction based on established clinical measures. The present metabolomics approach revealed molecular signatures associated directly to the response of the OGTT and to IGT in line with previous studies. However, clustering of subjects with IGT revealed distinct metabolic signatures of otherwise similar individuals, pointing toward the possibility of metabolomics for patient stratification.
引用
收藏
页码:6357 / 6370
页数:14
相关论文
共 57 条
  • [1] Bilirubin as a Potential Causal Factor in Type 2 Diabetes Risk: A Mendelian Randomization Study
    Abbasi, Ali
    Deetman, Petronella E.
    Corpeleijn, Eva
    Gansevoort, Ron T.
    Gans, Rijk O. B.
    Hillege, Hans L.
    van der Harst, Pim
    Stolk, Ronald P.
    Navis, Gerjan
    Alizadeh, Behrooz Z.
    Bakker, Stephan J. L.
    [J]. DIABETES, 2015, 64 (04) : 1459 - 1469
  • [2] Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
    Ahlqvist, Emma
    Storm, Petter
    Karajamaki, Annemari
    Martinell, Mats
    Dorkhan, Mozhgan
    Carlsson, Annelie
    Vikman, Petter
    Prasad, Rashmi B.
    Aly, Dina Mansour
    Almgren, Peter
    Wessman, Ylva
    Shaat, Nael
    Spegel, Peter
    Mulder, Hindrik
    Lindholm, Eero
    Melander, Olle
    Hansson, Ola
    Malmqvist, Ulf
    Lernmark, Ake
    Lahti, Kaj
    Forsen, Tom
    Tuomi, Tiinamaija
    Rosengren, Anders H.
    Groop, Leif
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2018, 6 (05) : 361 - 369
  • [3] A Predictive Metabolic Signature for the Transition From Gestational Diabetes Mellitus to Type 2 Diabetes
    Allalou, Amina
    Nalla, Amarnadh
    Prentice, Kacey J.
    Liu, Ying
    Zhang, Ming
    Dai, Feihan F.
    Ning, Xian
    Osborne, Lucy R.
    Cox, Brian J.
    Gunderson, Erica P.
    Wheeler, Michael B.
    [J]. DIABETES, 2016, 65 (09) : 2529 - 2539
  • [4] [Anonymous], 2012, DIABETES CARE, V35, pS11, DOI [10.2337/dc12-s004, 10.2337/dc35-S011]
  • [5] [Anonymous], 2006, Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation
  • [6] Charrad M, 2014, J STAT SOFTW, V61, P1
  • [7] Cheriyath Pramil, 2010, J Clin Med Res, V2, P201, DOI 10.4021/jocmr425w
  • [8] Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance
    Choi, Sung Hee
    Ginsberg, Henry N.
    [J]. TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2011, 22 (09) : 353 - 363
  • [9] α-Hydroxybutyric Acid Is a Selective Metabolite Biomarker of Impaired Glucose Tolerance
    Cobb, Jeff
    Eckhart, Andrea
    Motsinger-Reif, Alison
    Carr, Bernadette
    Groop, Leif
    Ferrannini, Ele
    [J]. DIABETES CARE, 2016, 39 (06) : 988 - 995
  • [10] Cobb Jeff, 2015, J Diabetes Sci Technol, V9, P69, DOI 10.1177/1932296814553622