Optical soliton perturbation with time-dependent coefficients in a log law media

被引:24
作者
Biswas, Anjan [1 ,2 ]
Cleary, Carl [2 ]
Watson, James E., Jr. [2 ]
Milovic, Daniela [3 ]
机构
[1] Delaware State Univ, Appl Math Res Ctr, Dept Math Sci, Dover, DE 19901 USA
[2] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[3] Univ Nis, Dept Telecommun, Fac Elect Engn, Nish 1800, Serbia
关键词
Solitons; Integrability; NONLINEAR MEDIA;
D O I
10.1016/j.amc.2010.07.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper obtains the exact 1-soliton solution to the nonlinear Schrodinger's equation with log law nonlinearity in presence of time-dependent perturbations. The dispersion and nonlinearity are also taken to be time-dependent. The perturbation terms that are considered are linear attenuation and inter-modal dispersion. The constraint condition between the time-dependent coefficients also fall out as a necessary condition for the solitons to exist. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2891 / 2894
页数:4
相关论文
共 10 条
  • [1] Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
  • [2] Optical solitons with log-law nonlinearity
    Biswas, Anjan
    Milovic, Daniela
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3763 - 3767
  • [3] Multimode incoherent spatial solitons in logarithmically saturable nonlinear media
    Christodoulides, DN
    Coskun, TH
    Mitchell, M
    Segev, M
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (11) : 2310 - 2313
  • [4] Global H1 solvability of the 3D logarithmic Schrodinger equation
    Guerrero, P.
    Lopez, J. L.
    Nieto, J.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 79 - 87
  • [5] Khalique CM, 2010, INT J PHYS SCI, V5, P280
  • [6] Optical soliton perturbation in a non-Kerr law media
    Kohl, Russell
    Biswas, Anjan
    Milovic, Daniela
    Zerrad, Essaid
    [J]. OPTICS AND LASER TECHNOLOGY, 2008, 40 (04) : 647 - 662
  • [7] Unified model for partially coherent solitons in logarithmically nonlinear media
    Królikowski, W
    Edmundson, D
    Bang, O
    [J]. PHYSICAL REVIEW E, 2000, 61 (03): : 3122 - 3126
  • [8] Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients
    Topkara, Engin
    Milovic, Daniela
    Sarma, Amarendra K.
    Zerrad, Essaid
    Biswas, Anjan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (09) : 2320 - 2330
  • [9] Soliton solution for an inhomogeneous highly dispersive media with a dual-power nonlinearity law
    Triki, Houria
    Wazwaz, Abdul-Majid
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (05) : 1178 - 1185
  • [10] YIQI Z, 2009, CHINESE PHYS B, V18, P2359