Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways

被引:227
作者
Nishimura, Yuhei
Martin, Christa L.
Lopez, Araceli Vazquez
Spence, Sarah J.
Alvarez-Retuerto, Ana Isabel
Sigman, Marian
Steindler, Corinna
Pellegrini, Sandra
Schanen, N. Carolyn
Warren, Stephen T.
Geschwind, Daniel H.
机构
[1] Univ Calif Los Angeles, Ctr Autism Res & Treatment, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Program Neurogenet, Dept Neurol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ctr Neurobhav Genet, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Psychiat, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Pediat, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Psychol, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USA
[7] Emory Univ, Dept Human Genet, Atlanta, GA 30322 USA
[8] Inst Pasteur, Unite Signalisat Cytokines, F-75724 Paris, France
[9] Alfred I DuPont Hosp Children, Ctr Pediat Res, Wilmington, DE 19803 USA
关键词
D O I
10.1093/hmg/ddm116
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autism is a heterogeneous condition that is likely to result from the combined effects of multiple genetic factors interacting with environmental factors. Given its complexity, the study of autism associated with Mendelian single gene disorders or known chromosomal etiologies provides an important perspective. We used microarray analysis to compare the mRNA expression profile in lymphoblastoid cells from males with autism due to a fragile X mutation (FMR1-FM), or a 15q11-q13 duplication (dup(15q)), and non-autistic controls. Gene expression profiles clearly distinguished autism from controls and separated individuals with autism based on their genetic etiology. We identified 68 genes that were dysregulated in common between autism with FMR1-FM and dup(15q). We also identified a potential molecular link between FMR1-FM and dup(15q), the cytoplasmic FMR1 interacting protein 1 (CYFIP1), which was up-regulated in dup(15q) patients. We were able to confirm this link in vitro by showing common regulation of two other dysregulated genes, JAKMIP1 and GPR155, downstream of FMR1 or CYFIP1. We also confirmed the reduction of the Jakmip1 protein in Fmr1 knock-out mice, demonstrating in vivo relevance. Finally, we showed independent confirmation of roles for JAKMIP1 and GPR155 in autism spectrum disorders (ASDs) by showing their differential expression in male sib pairs discordant for idiopathic ASD. These results provide evidence that blood derived lymphoblastoid cells gene expression is likely to be useful for identifying etiological subsets of autism and exploring its path ophysiology.
引用
收藏
页码:1682 / 1698
页数:17
相关论文
共 73 条
[51]   The behavioral phenotype in fragile X: Symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders [J].
Rogers, SJ ;
Wehner, EA ;
Hagerman, R .
JOURNAL OF DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS, 2001, 22 (06) :409-417
[52]   Suggestive evidence for association of D2S2188 marker (2q31.1) with autism in 143 Sicilian (Italian) TRIO families [J].
Romano, V ;
Calí, F ;
Seldita, G ;
Mirisola, M ;
D'Anna, RP ;
Gambino, G ;
Schinocca, P ;
Romano, S ;
Ayala, GF ;
Canziani, F ;
De Leo, G ;
Elia, M .
PSYCHIATRIC GENETICS, 2005, 15 (02) :149-150
[53]   TM4: A free, open-source system for microarray data management and analysis [J].
Saeed, AI ;
Sharov, V ;
White, J ;
Li, J ;
Liang, W ;
Bhagabati, N ;
Braisted, J ;
Klapa, M ;
Currier, T ;
Thiagarajan, M ;
Sturn, A ;
Snuffin, M ;
Rezantsev, A ;
Popov, D ;
Ryltsov, A ;
Kostukovich, E ;
Borisovsky, I ;
Liu, Z ;
Vinsavich, A ;
Trush, V ;
Quackenbush, J .
BIOTECHNIQUES, 2003, 34 (02) :374-+
[54]   CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein [J].
Schenck, A ;
Bardoni, B ;
Langmann, C ;
Harden, N ;
Mandel, JL ;
Giangrande, A .
NEURON, 2003, 38 (06) :887-898
[55]   Large-scale copy number polymorphism in the human genome [J].
Sebat, J ;
Lakshmi, B ;
Troge, J ;
Alexander, J ;
Young, J ;
Lundin, P ;
Måner, S ;
Massa, H ;
Walker, M ;
Chi, MY ;
Navin, N ;
Lucito, R ;
Healy, J ;
Hicks, J ;
Ye, K ;
Reiner, A ;
Gilliam, TC ;
Trask, B ;
Patterson, N ;
Zetterberg, A ;
Wigler, M .
SCIENCE, 2004, 305 (5683) :525-528
[56]   Examination of IMPA1 and IMPA2 genes in manic-depressive patients:: association between IMPA2 promoter polymorphisms and bipolar disorder [J].
Sjoholt, G ;
Ebstein, RP ;
Lie, RT ;
Berle, JO ;
Mallet, J ;
Deleuze, JF ;
Levinson, DF ;
Laurent, C ;
Mujahed, M ;
Bannoura, I ;
Murad, I ;
Molven, A ;
Steen, VM .
MOLECULAR PSYCHIATRY, 2004, 9 (06) :621-629
[57]   Jamip1 (Marlin-1) defines a family of proteins interacting with Janus kinases and microtubules [J].
Steindler, C ;
Li, Z ;
Algarté, M ;
Alcover, A ;
Libri, V ;
Ragimbeau, J ;
Pellegrini, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (41) :43168-43177
[58]   Evidence for sex-specific risk alleles in autism spectrum disorder [J].
Stone, JL ;
Merriman, B ;
Cantor, RM ;
Yonan, AL ;
Gilliam, TC ;
Geschwind, DH ;
Nelson, SF .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 75 (06) :1117-1123
[59]  
Sutcliffe James S., 1992, Human Molecular Genetics, V1, P397, DOI 10.1093/hmg/1.6.397
[60]   Genetics of childhood disorders: XLVII. Autism, Part 6: Duplication and inherited susceptibility of chromosome 15q11-q13 genes in autism [J].
Sutcliffe, JS ;
Nurmi, EL .
JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2003, 42 (02) :253-256