Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset

被引:80
作者
Behley, Jens [1 ]
Garbade, Martin [2 ]
Milioto, Andres [1 ]
Quenzel, Jan [3 ]
Behnke, Sven [3 ]
Gall, Juergen [2 ]
Stachniss, Cyrill [1 ]
机构
[1] Univ Bonn, Photogrammetry & Robot Lab, Nussallee 15, D-53155 Bonn, Germany
[2] Univ Bonn, Comp Vis Grp, Bonn, Germany
[3] Univ Bonn, Autonomous Intelligent Syst, Bonn, Germany
关键词
Dataset; LiDAR; point clouds; semantic segmentation; panoptic segmentation; semantic scene completion;
D O I
10.1177/02783649211006735
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
A holistic semantic scene understanding exploiting all available sensor modalities is a core capability to master self-driving in complex everyday traffic. To this end, we present the SemanticKITTI dataset that provides point-wise semantic annotations of Velodyne HDL-64E point clouds of the KITTI Odometry Benchmark. Together with the data, we also published three benchmark tasks for semantic scene understanding covering different aspects of semantic scene understanding: (1) semantic segmentation for point-wise classification using single or multiple point clouds as input; (2) semantic scene completion for predictive reasoning on the semantics and occluded regions; and (3) panoptic segmentation combining point-wise classification and assigning individual instance identities to separate objects of the same class. In this article, we provide details on our dataset showing an unprecedented number of fully annotated point cloud sequences, more information on our labeling process to efficiently annotate such a vast amount of point clouds, and lessons learned in this process. The dataset and resources are available at .
引用
收藏
页码:959 / 967
页数:9
相关论文
共 36 条
  • [11] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [12] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [13] Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping
    Gan, Lu
    Zhang, Ray
    Grizzle, Jessy W.
    Eustice, Ryan M.
    Ghaffari, Maani
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 790 - 797
  • [14] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [15] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [16] Geyer J., 2020, 200406320 ARXIV, V2004
  • [17] LVIS: A Dataset for Large Vocabulary Instance Segmentation
    Gupta, Agrim
    Dollar, Piotr
    Girshick, Ross
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5351 - 5359
  • [18] Hackel T., 2017, ARXIV, DOI [10.5194/isprs-annals-IV-1-W1-91-2017, DOI 10.5194/ISPRS-ANNALS-IV-1-W1-91-2017]
  • [19] Jaritz M., 2020, P IEEE CVF C COMP VI, p12,605
  • [20] Kesten R., 2019, Lyft level 5 AV dataset 2019