Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset

被引:95
作者
Behley, Jens [1 ]
Garbade, Martin [2 ]
Milioto, Andres [1 ]
Quenzel, Jan [3 ]
Behnke, Sven [3 ]
Gall, Juergen [2 ]
Stachniss, Cyrill [1 ]
机构
[1] Univ Bonn, Photogrammetry & Robot Lab, Nussallee 15, D-53155 Bonn, Germany
[2] Univ Bonn, Comp Vis Grp, Bonn, Germany
[3] Univ Bonn, Autonomous Intelligent Syst, Bonn, Germany
关键词
Dataset; LiDAR; point clouds; semantic segmentation; panoptic segmentation; semantic scene completion;
D O I
10.1177/02783649211006735
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
A holistic semantic scene understanding exploiting all available sensor modalities is a core capability to master self-driving in complex everyday traffic. To this end, we present the SemanticKITTI dataset that provides point-wise semantic annotations of Velodyne HDL-64E point clouds of the KITTI Odometry Benchmark. Together with the data, we also published three benchmark tasks for semantic scene understanding covering different aspects of semantic scene understanding: (1) semantic segmentation for point-wise classification using single or multiple point clouds as input; (2) semantic scene completion for predictive reasoning on the semantics and occluded regions; and (3) panoptic segmentation combining point-wise classification and assigning individual instance identities to separate objects of the same class. In this article, we provide details on our dataset showing an unprecedented number of fully annotated point cloud sequences, more information on our labeling process to efficiently annotate such a vast amount of point clouds, and lessons learned in this process. The dataset and resources are available at .
引用
收藏
页码:959 / 967
页数:9
相关论文
共 36 条
[1]  
Behley J, 2018, ROBOTICS: SCIENCE AND SYSTEMS XIV
[2]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[3]  
Behley J, 2013, IEEE INT C INT ROBOT, P4195, DOI 10.1109/IROS.2013.6696957
[4]  
Behley J, 2012, IEEE INT CONF ROBOT, P4391, DOI 10.1109/ICRA.2012.6225003
[5]  
Behley Jens, 2020, BENCHMARK LIDAR BASE
[6]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[7]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[8]  
Chen XYL, 2020, ROBOTICS: SCIENCE AND SYSTEMS XVI
[9]  
Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223