Gibbs entropy of network ensembles by cavity methods

被引:29
作者
Anand, Kartik [1 ]
Bianconi, Ginestra [2 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
关键词
COMPLEX; GRAPH;
D O I
10.1103/PhysRevE.82.011116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Gibbs entropy of a microcanonical network ensemble is the logarithm of the number of network configurations compatible with a set of hard constraints. This quantity characterizes the level of order and randomness encoded in features of a given real network. Here, we show how to relate this entropy to large deviations of conjugated canonical ensembles. We derive exact expression for this correspondence using the cavity methods for the configuration model, for the ensembles with constraint degree sequence and community structure and for the ensemble with constraint degree sequence and number of links at a given distance.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Entropy measures for networks: Toward an information theory of complex topologies [J].
Anand, Kartik ;
Bianconi, Ginestra .
PHYSICAL REVIEW E, 2009, 80 (04)
[3]  
ANNIBALE A, ARXIV09081759
[4]  
[Anonymous], 2010, Lectures on Complex Networks
[5]  
BARRAT A, 2008, DYNAMICS PROCESSES C
[6]   The entropy of randomized network ensembles [J].
Bianconi, Ginestra .
EPL, 2008, 81 (02)
[7]   Entropies of complex networks with hierarchically constrained topologies [J].
Bianconi, Ginestra ;
Coolen, Anthony C. C. ;
Vicente, Conrad J. Perez .
PHYSICAL REVIEW E, 2008, 78 (01)
[8]   Entropy of network ensembles [J].
Bianconi, Ginestra .
PHYSICAL REVIEW E, 2009, 79 (03)
[9]   Assessing the relevance of node features for network structure [J].
Bianconi, Ginestra ;
Pin, Paolo ;
Marsili, Matteo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (28) :11433-11438
[10]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308