A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations

被引:460
作者
Gao, JL
Amara, P
Alhambra, C
Field, MJ
机构
[1] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[2] Inst Biol Struct Jean Pierre Ebel, F-38027 Grenoble 1, France
关键词
D O I
10.1021/jp9809890
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A generalized hybrid orbital (GHO) method has been developed at the semiempirical level in combined quantum mechanical and molecular mechanical (QM/MM) calculations. In this method, a set of hybrid orbitals is placed on the boundary atom between the QM and MM fragments, and one of the hybrid orbitals participates in the SCF calculation for the atoms in the QM region. The GHO method provides a well-defined potential energy surface for a hybrid QM/MM system and is a significant improvement over the "link-atom" approach by saturating the QM valencies with hydrogen atoms. The method has been tested on small molecules and yields reasonable structural, energetic, and electronic results in comparison with the results of the corresponding QM and MM approximations. The GHO method will greatly increase the applicability of combined QM/MM methods to systems comprising large molecules, such as proteins.
引用
收藏
页码:4714 / 4721
页数:8
相关论文
共 35 条
[1]   Quantum chemical computations on parts of large molecules: The ab initio local self consistent field method [J].
Assfeld, X ;
Rivail, JL .
CHEMICAL PHYSICS LETTERS, 1996, 263 (1-2) :100-106
[2]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[3]   COMPUTER-SIMULATION AND ANALYSIS OF THE REACTION PATHWAY OF TRIOSEPHOSPHATE ISOMERASE [J].
BASH, PA ;
FIELD, MJ ;
DAVENPORT, RC ;
PETSKO, GA ;
RINGE, D ;
KARPLUS, M .
BIOCHEMISTRY, 1991, 30 (24) :5826-5832
[4]   SIMULATION OF MC-SCF RESULTS ON COVALENT ORGANIC MULTIBOND REACTIONS - MOLECULAR MECHANICS WITH VALENCE BOND (MM-VB) [J].
BERNARDI, F ;
OLIVUCCI, M ;
ROBB, MA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (05) :1606-1616
[5]  
Bersuker IB, 1997, INT J QUANTUM CHEM, V63, P1051
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   HIV-1 PROTEASE CLEAVAGE MECHANISM ELUCIDATED WITH MOLECULAR-DYNAMICS SIMULATION [J].
CHATFIELD, DC ;
BROOKS, BR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (20) :5561-5572
[8]   GROUND-STATES OF MOLECULES .38. MNDO METHOD - APPROXIMATIONS AND PARAMETERS [J].
DEWAR, MJS ;
THIEL, W .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :4899-4907
[9]   THE DEVELOPMENT AND USE OF QUANTUM-MECHANICAL MOLECULAR-MODELS .76. AM1 - A NEW GENERAL-PURPOSE QUANTUM-MECHANICAL MOLECULAR-MODEL [J].
DEWAR, MJS ;
ZOEBISCH, EG ;
HEALY, EF ;
STEWART, JJP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (13) :3902-3909
[10]  
Eurenius KP, 1996, INT J QUANTUM CHEM, V60, P1189, DOI 10.1002/(SICI)1097-461X(1996)60:6<1189::AID-QUA7>3.0.CO