Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems

被引:349
|
作者
Jia, Yanhua [1 ]
Jiang, Qinglin [1 ]
Sun, Hengda [2 ]
Liu, Peipei [1 ]
Hu, Dehua [1 ]
Pei, Yanzhong [3 ]
Liu, Weishu [4 ]
Crispin, Xavier [5 ]
Fabiano, Simone [5 ]
Ma, Yuguang [1 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Tongji Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[5] Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrkoping, Sweden
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
processing strategies; self-powered electronic systems; thermoelectric materials; wearable devices; HUMAN-BODY HEAT; HIGH-PERFORMANCE; CONDUCTING POLYMER; THIN-FILM; CARBON NANOTUBES; ORGANIC SEMICONDUCTORS; SEEBECK COEFFICIENT; THERMAL-CONDUCTIVITY; ENERGY; TEMPERATURE;
D O I
10.1002/adma.202102990
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emergence of artificial intelligence and the Internet of Things has led to a growing demand for wearable and maintenance-free power sources. The continual push toward lower operating voltages and power consumption in modern integrated circuits has made the development of devices powered by body heat finally feasible. In this context, thermoelectric (TE) materials have emerged as promising candidates for the effective conversion of body heat into electricity to power wearable devices without being limited by environmental conditions. Driven by rapid advances in processing technology and the performance of TE materials over the past two decades, wearable thermoelectric generators (WTEGs) have gradually become more flexible and stretchable so that they can be used on complex and dynamic surfaces. In this review, the functional materials, processing techniques, and strategies for the device design of different types of WTEGs are comprehensively covered. Wearable self-powered systems based on WTEGs are summarized, including multi-function TE modules, hybrid energy harvesting, and all-in-one energy devices. Challenges in organic TE materials, interfacial engineering, and assessments of device performance are discussed, and suggestions for future developments in the area are provided. This review will promote the rapid implementation of wearable TE materials and devices in self-powered electronic systems.
引用
收藏
页数:46
相关论文
共 50 条
  • [41] All-in-one self-powered wearable biosensors systems
    Li, Qianying
    Gao, Mingyuan
    Sun, Xueqian
    Wang, Xiaolin
    Chu, Dewei
    Cheng, Wenlong
    Xi, Yi
    Lu, Yuerui
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2025, 163
  • [42] Self-Powered Electronic Skin with Multisensory Functions Based on Thermoelectric Conversion
    Yuan, Jinfeng
    Zhu, Rong
    Li, Guozhen
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (09):
  • [43] Wearable self-powered motion sensor
    Winkless, Laurie
    MATERIALS TODAY, 2015, 18 (02) : 63 - 64
  • [44] Integrated thermoelectric generator and application to self-powered heating systems
    Qiu, K.
    Hayden, A. C. S.
    ICT'06: XXV INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS, 2006, : 198 - +
  • [45] Self-powered hydrogel wearable bioelectronics
    Chen, Ruo-Si
    Gao, Mingyuan
    Chu, Dewei
    Cheng, Wenlong
    Lu, Yuerui
    NANO ENERGY, 2024, 128
  • [46] Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics
    Xiangjiang Meng
    Chenchen Cai
    Bin Luo
    Tao Liu
    Yuzheng Shao
    Shuangfei Wang
    Shuangxi Nie
    Nano-Micro Letters, 2023, 15
  • [47] Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics
    Meng, Xiangjiang
    Cai, Chenchen
    Luo, Bin
    Liu, Tao
    Shao, Yuzheng
    Wang, Shuangfei
    Nie, Shuangxi
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [48] Self-powered and wearable biosensors for healthcare
    Zeng, Xiaolong
    Peng, Ruiheng
    Fan, Zhiyong
    Lin, Yuanjing
    MATERIALS TODAY ENERGY, 2022, 23
  • [49] Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics
    Xiangjiang Meng
    Chenchen Cai
    Bin Luo
    Tao Liu
    Yuzheng Shao
    Shuangfei Wang
    Shuangxi Nie
    Nano-Micro Letters, 2023, 15 (08) : 316 - 361
  • [50] Self-powered bioelectrochemical devices
    Conzuelo, Felipe
    Ruff, Adrian
    Schuhmann, Wolfgang
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 12 : 156 - 163