Performance Evaluation of Automated Lung Segmentation for High Resolution Computed Tomography (HRCT) Thorax Images

被引:0
作者
Noor, Norliza M. [1 ]
Than, Joel C. M. [1 ]
Rijal, Omar M. [2 ]
Kassim, Rosminah M. [3 ]
Yunus, Ashari [3 ]
机构
[1] Univ Teknol Malaysia, Razak Sch Engn & Adv Technol, UTM Kuala Lumpur Campus,Jalan Semarak, Kuala Lumpur 54100, Malaysia
[2] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[3] Inst Resp Med, Kuala Lumpur 50586, Malaysia
来源
2015 INTERNATIONAL CONFERENCE ON BIOSIGNAL ANALYSIS, PROCESSING AND SYSTEMS (ICBAPS) | 2015年
关键词
lung; segmentation; performance; quality; CT; PULMONARY NODULES; ACTIVE CONTOURS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Segmentation is the preliminary steps in developing a computer aided diagnosis (CAD) system. Determining the quality of segmentation will be able to minimize errors in the CAD system. Ninety-six High Resolution Computed Tomography (HRCT) thorax images in DICOM format were obtained from the Department of Diag-nostic imaging of Kuala Lumpur, Malaysia consisting of Interstitial Lung Disease (ILD) cases, other lung related diseases (Non-ILD) cases and healthy (normal) cases. The study utilizes a framework of having five pre-determined levels of HRCT Thorax image slices based on lung anatomy selected by the radiologist. For the purpose of this study only Level 1 is used. The images were automatically segmented and compared with ground truth which the manual tracings done by a radiologist. Polyline distance metric and Euclidean distance were used to determine the quality of segmentation. The quality of the segmentation deteriorates when the polyline and Euclidean distance increases. Generally values above five pixels would yield poor segmentation quality. Using the Bland-Altman method and plot, it can be seen the level of agreement between polyline and Euclidean distance metrics as well as the quality of segmentation.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Performance evaluation of mask R-CNN for lung segmentation using computed tomographic images
    Nam, Kibok
    Lee, Dahye
    Kang, Seonghee
    Lee, Seungwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 81 (04) : 346 - 353
  • [42] Evaluation of the Degree of Malignancy of Lung Nodules in Computed Tomography Images
    Goncalves, L.
    Novo, J.
    Cunha, A.
    Campilho, A.
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 6, 2017, : 74 - 80
  • [43] Pleuroparenchymal fibroelastosis: role of high-resolution computed tomography (HRCT) and CT-guided transthoracic core lung biopsy
    Esteves C.
    Costa F.R.
    Redondo M.T.
    Moura C.S.
    Guimarães S.
    Morais A.
    Pereira J.M.
    Insights into Imaging, 2016, 7 (1) : 155 - 162
  • [44] Segmentation of liver computed tomography images using dictionary-based snakes
    Shanila, N.
    Kumar, R. S. Vinod
    Ravi, R. Ramya
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 39 (03) : 283 - 296
  • [45] Automated femur segmentation from computed tomography images using a deep neural network
    Bjornsson, P. A.
    Helgason, B.
    Palsson, H.
    Sigurdsson, S.
    Gudnason, V.
    Ellingsen, L. M.
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [46] Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review
    Kumar, Haribalan
    DeSouza, Steve, V
    Petrov, Maxim S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 178 : 319 - 328
  • [47] Segmentation of cancellous bone from high-resolution computed tomography images: Influence on trablecular bone measurements
    Elmoutaouakkil, A
    Peyrin, F
    Elkafi, J
    Laval-Jeantet, AM
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (04) : 354 - 362
  • [48] Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study
    Rudyanto, Rina D.
    Kerkstra, Sjoerd
    van Rilowort, Eva M.
    Fetita, Catalin
    Brillet, Pierre-Yves
    Lefevre, Christophe
    Xue, Wenzhe
    Zhu, Xiangjun
    Liang, Jianming
    Oksuz, Ilkay
    Unay, Devrim
    Kadipasoglu, Kamuran
    Estepar, Raul San Jose
    Ross, James C.
    Washko, George R.
    Prieto, Juan-Carlos
    Hernandez Hoyos, Marcela
    Orkisz, Maciej
    Meine, Hans
    Huellebrand, Markus
    Stoecker, Christina
    Mir, Fernando Lopez
    Naranjo, Valery
    Villanueva, Eliseo
    Staring, Marius
    Xiao, Changyan
    Stoel, Berend C.
    Fabijanska, Anna
    Smistad, Erik
    Elster, Anne C.
    Lindseth, Frank
    Foruzan, Amir Hossein
    Kiros, Ryan
    Popuri, Karteek
    Cobzas, Dana
    Jimenez-Carretero, Daniel
    Santos, Andres
    Ledesma-Carbayo, Maria J.
    Helmberger, Michael
    Urschler, Martin
    Pienn, Michael
    Bosboom, Dennis G. H.
    Campo, Arantza
    Prokop, Mathias
    de Jong, Pim A.
    Ortiz-de-Solorzano, Carlos
    Munoz-Barrutia, Arrate
    van Ginneken, Bram
    MEDICAL IMAGE ANALYSIS, 2014, 18 (07) : 1217 - 1232
  • [49] Diagnostic performance of high resolution computed tomography in otosclerosis
    Kanzara, Todd
    Virk, Jagdeep Singh
    WORLD JOURNAL OF CLINICAL CASES, 2017, 5 (07) : 286 - 291
  • [50] Lung density on high resolution computer tomography (HRCT) reflects degree of inflammation in smokers
    Reza Karimi
    Göran Tornling
    Helena Forsslund
    Mikael Mikko
    Åsa M Wheelock
    Sven Nyrén
    Carl Magnus Sköld
    Respiratory Research, 15