Statistical condition estimation for linear least squares

被引:26
作者
Kenney, CS [1 ]
Laub, AJ [1 ]
Reese, MS [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
conditioning; sensitivity; linear least squares;
D O I
10.1137/S0895479895291935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Statistical condition estimation is applied to the linear least squares problem. The method obtains componentwise condition estimates via the Frechet derivative. A rigorous statistical theory exists that determines the probability of accuracy in the estimates. The method is as computationally efficient as normwise condition estimation methods, and it is easily adapted to respect structural constraints on perturbations of the input data. Several examples illustrate the method.
引用
收藏
页码:906 / 923
页数:18
相关论文
共 50 条
[41]   Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems [J].
Borle, Ajinkya ;
Lomonaco, Samuel J. .
WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2019), 2019, 11355 :289-301
[42]   An Iterative Algorithm of Linear Least Squares to Identify Online the Capacity of Supercapacitor [J].
Zhang, Kai ;
Li, Yaguo ;
Bai, Lu ;
Yang, Dongdong ;
Li, Guanliang ;
Pei, Chu .
PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, :860-863
[43]   GPU parameter tuning for tall and skinny dense linear least squares problems [J].
Sauk, Benjamin ;
Ploskas, Nikolaos ;
Sahinidis, Nikolaos .
OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (03) :638-660
[44]   Confidence limits for Weibull parameters estimated using linear least squares analysis [J].
Davies, Ian J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (15) :5057-5064
[45]   Trust-region and other regularisations of linear least-squares problems [J].
C. Cartis ;
N. I. M. Gould ;
P. L. Toint .
BIT Numerical Mathematics, 2009, 49 :21-53
[46]   A simple illustration of interleaved learning using Kalman filter for linear least squares [J].
John, Majnu ;
Wu, Yihren .
RESULTS IN APPLIED MATHEMATICS, 2023, 20
[47]   Self-Calibration and Bilinear Inverse Problems via Linear Least Squares [J].
Ling, Shuyang ;
Strohmer, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (01) :252-292
[48]   Trust-region and other regularisations of linear least-squares problems [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, P. L. .
BIT NUMERICAL MATHEMATICS, 2009, 49 (01) :21-53
[49]   Computation of Optimal Backward Perturbation Bounds for Large Sparse Linear Least Squares Problems [J].
A. Malyshev ;
M. Sadkane .
BIT Numerical Mathematics, 2001, 41 :739-747
[50]   Randomized symmetric Gauss-Seidel method for solving linear least squares problems [J].
Sha, Fan ;
Zhang, Jianbing .
AIMS MATHEMATICS, 2024, 9 (07) :17453-17463