Statistical condition estimation for linear least squares

被引:26
作者
Kenney, CS [1 ]
Laub, AJ [1 ]
Reese, MS [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
conditioning; sensitivity; linear least squares;
D O I
10.1137/S0895479895291935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Statistical condition estimation is applied to the linear least squares problem. The method obtains componentwise condition estimates via the Frechet derivative. A rigorous statistical theory exists that determines the probability of accuracy in the estimates. The method is as computationally efficient as normwise condition estimation methods, and it is easily adapted to respect structural constraints on perturbations of the input data. Several examples illustrate the method.
引用
收藏
页码:906 / 923
页数:18
相关论文
共 50 条
[21]   Unbiased estimation of Weibull modulus using linear least squares analysis-A systematic approach [J].
Davies, Ian J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (01) :369-380
[22]   Least-Squares Solution of Linear Differential Equations [J].
Mortari, Daniele .
MATHEMATICS, 2017, 5 (04)
[23]   A dynamic method for weighted linear least squares problems [J].
Wu, XY ;
Xia, JL ;
Yang, F .
COMPUTING, 2002, 68 (04) :375-386
[24]   BILINEAR DICTIONARY UPDATE VIA LINEAR LEAST SQUARES [J].
Yu, Qi ;
Dai, Wei ;
Cvetkovic, Zoran ;
Zhu, Jubo .
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, :7923-7927
[25]   Perturbation theory for generalized and constrained linear least squares [J].
Gulliksson, M ;
Wedin, PÅ .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2000, 7 (04) :181-195
[26]   Spatially variant attenuation and backscatter coefficient estimation using a regularized linear least-squares approach [J].
Birdi, Jasleen ;
D'hooge, Jan ;
Bertrand, Alexander .
INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
[27]   Doppler Frequency Estimation of Point Targets in the Single-Channel SAR Image by Linear Least Squares [J].
Won, Joong-Sun .
REMOTE SENSING, 2018, 10 (07)
[28]   On the bias of linear least squares algorithms for passive target localization [J].
Dogançay, K .
SIGNAL PROCESSING, 2004, 84 (03) :475-486
[29]   SOLUTION OF LINEAR LEAST-SQUARES VIA THE ABS ALGORITHM [J].
SPEDICATO, E ;
BODON, E .
MATHEMATICAL PROGRAMMING, 1993, 58 (01) :111-136
[30]   STOPPING CRITERIA FOR THE ITERATIVE SOLUTION OF LINEAR LEAST SQUARES PROBLEMS [J].
Chang, X. -W. ;
Paige, C. C. ;
Titley-Peloquin, D. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) :831-852