Thermodynamic analysis of a biomass-fired Kalina cycle with regenerative heater

被引:38
作者
Cao, Liyan [1 ]
Wang, Jiangfeng [1 ]
Dai, Yiping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Biomass; Kalina cycle; Regenerative heater; Optimization; EXERGY ANALYSES; ENERGY; POWER; SYSTEM; OPTIMIZATION; STEAM; RESOURCES; PLANTS; ORC;
D O I
10.1016/j.energy.2014.09.058
中图分类号
O414.1 [热力学];
学科分类号
摘要
The biomass fuel is a renewable energy resource, which is viewed as a promising alternative to fossil energy. This paper investigates a biomass-fired Kalina cycle with a regenerative heater which is generally utilized to heat the feedwater and to increase the efficiency in coal-fired steam power plant The mathematical model of the biomass-fired Kalina cycle with a regenerative heater is established to conduct numerical simulation. A parametric analysis is conducted to examine the effects of some key thermodynamic parameters on the system performance. Furthermore, a parametric optimization is carried out by genetic algorithm to obtain the optimum performance of system. The results demonstrate that there exists an optimum extraction pressure and its corresponding maximum fraction of flow extracted from turbine to maximize the net power output and system efficiency. In addition, a higher turbine inlet pressure or turbine inlet temperature leads to higher net power output and system efficiency. And net power output and system efficiency increases as separator temperature rises. The optimization result of the biomass-fired Kalina cycle with/without regenerative heater indicates the system is more efficient when regenerative heater is added. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:760 / 770
页数:11
相关论文
共 33 条
[1]   Development and assessment of an integrated biomass-based multi-generation energy system [J].
Ahmadi, Pouria ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY, 2013, 56 :155-166
[2]   Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
ENERGY, 2012, 45 (01) :975-985
[3]  
[Anonymous], 2012, THERM POW PLANT
[4]   Biomass resources for energy in North-eastern Brazil [J].
Anselmo, P ;
Badr, O .
APPLIED ENERGY, 2004, 77 (01) :51-67
[5]   Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study [J].
Arslan, Oguz .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) :1866-1873
[6]   Biomass-fired power generation [J].
Bain, RL ;
Overend, RP ;
Craig, KR .
FUEL PROCESSING TECHNOLOGY, 1998, 54 (1-3) :1-16
[7]   Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis [J].
Bhattacharya, Abhishek ;
Manna, Dulal ;
Paul, Bireswar ;
Datta, Amitava .
ENERGY, 2011, 36 (05) :2599-2610
[8]   Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles [J].
Bombarda, Paola ;
Invernizzi, Costante M. ;
Pietra, Claudio .
APPLIED THERMAL ENGINEERING, 2010, 30 (2-3) :212-219
[9]   Energy and exergy analyses of a biomass-based hydrogen production system [J].
Cohce, M. K. ;
Dincer, I. ;
Rosen, M. A. .
BIORESOURCE TECHNOLOGY, 2011, 102 (18) :8466-8474
[10]   Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery [J].
Dai, Yiping ;
Wang, Jiangfeng ;
Gao, Lin .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) :576-582