Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm

被引:57
作者
Cansizoglu, Hilal [1 ]
Bartolo-Perez, Cesar [1 ]
Gao, Yang [1 ]
Devine, Ekaterina Ponizovskaya [1 ,2 ]
Ghandiparsi, Soroush [1 ]
Polat, kazim G. [1 ]
Mamtaz, Hasina H. [1 ]
Yamada, Toshishige [2 ,3 ]
Elrefaie, Aly F. [1 ,3 ]
Wang, Shih-Yuan [2 ]
Islam, M. Saif [1 ]
机构
[1] Univ Calif Davis, Elect & Comp Engn, Davis, CA 95618 USA
[2] W&WSens Devices Inc, 4546 Camino,Suite 215, Los Altos, CA 94022 USA
[3] Univ Calif Santa Cruz, Elect Engn, Baskin Sch Engn, Santa Cruz, CA 95064 USA
关键词
STRAIN RELAXATION; PHOTODETECTORS; GROWTH; CMOS;
D O I
10.1364/PRJ.6.000734
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, high-speed surface-illuminated Ge-on-Si pin photodiodes with improved efficiency are demonstrated. With photon-trapping microhole features, the external quantum efficiency (EQE) of the Ge-on-Si pin diode is > 80% at 1300 nm and 73% at 1550 nm with an intrinsic Ge layer of only 2 mu m thickness, showing much improvement compared to one without microholes. More than threefold EQE improvement is also observed at longer wavelengths beyond 1550 nm. These results make the microhole-enabled Ge-on-Si photodiodes promising to cover both the existing C and L bands, as well as a new data transmission window (1620 -1700 nm), which can be used to enhance the capacity of conventional standard single-mode fiber cables. These photodiodes have potential for many applications, such as inter-/intra-datacenters, passive optical networks, metro and longhaul dense wavelength division multiplexing systems, eye-safe lidar systems, and quantum communications. The CMOS and BiCMOS mono-lithic integration compatibility of this work is also attractive for Ge CMOS, near-infrared sensing, and communication integration. (C) 2018 Chinese Laser Press
引用
收藏
页码:734 / 742
页数:9
相关论文
共 49 条
[31]  
Moeneclaey B, 2015, 2015 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC)
[32]   Enhancing Optical Communications with Brand New Fibers [J].
Morioka, Toshio ;
Awaji, Yoshinari ;
Ryf, Roland ;
Winzer, Peter ;
Richardson, David ;
Poletti, Francesco .
IEEE COMMUNICATIONS MAGAZINE, 2012, 50 (02) :S31-S42
[33]  
Nie Q.C., 2014, ADV MAT RES, P2486
[34]   A 25-Gb/s 5 x 5 mm2 Chip-Scale Silicon-Photonic Receiver Integrated With 28-nm CMOS Transimpedance Amplifier [J].
Okamoto, Daisuke ;
Suzuki, Yasuyuki ;
Yashiki, Kenichiro ;
Hagihara, Yasuhiko ;
Tokushima, Masatoshi ;
Fujikata, Junichi ;
Kurihara, Mitsuru ;
Tsuchida, Junichi ;
Nedachi, Takaaki ;
Inasaka, Jun ;
Kurata, Kazuhiko .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (12) :2988-2995
[35]   Resonant scattering from two-dimensional gratings [J].
Peng, S ;
Morris, GM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (05) :993-1005
[36]   Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector [J].
Ren, Min ;
Gu, Xiaorong ;
Liang, Yan ;
Kong, Weibin ;
Wu, E. ;
Wu, Guang ;
Zeng, Heping .
OPTICS EXPRESS, 2011, 19 (14) :13497-13502
[37]   CHARACTERIZING HIGH-SPEED OSCILLOSCOPES [J].
RUSH, K ;
DRAVING, S ;
KERLEY, J .
IEEE SPECTRUM, 1990, 27 (09) :38-39
[38]   Airborne Laser Systems for Atmospheric Sounding in the Near Infrared [J].
Sabatini, Roberto ;
Richardson, Mark A. ;
Jia, Huamin ;
Zammit-Mangion, David .
LASER SOURCES AND APPLICATIONS, 2012, 8433
[39]   Deep optical imaging of tissue using the second and third near-infrared spectral windows [J].
Sordillo, Laura A. ;
Pu, Yang ;
Pratavieira, Sebastiao ;
Budansky, Yury ;
Alfano, Robert R. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (05)
[40]  
Süess MJ, 2013, NAT PHOTONICS, V7, P466, DOI [10.1038/NPHOTON.2013.67, 10.1038/nphoton.2013.67]