Polar Sine Based Siamese Neural Network for Gesture Recognition

被引:0
作者
Berlemont, Samuel [1 ]
Lefebvre, Gregoire [1 ]
Duffner, Stefan [2 ]
Garcia, Christophe [2 ]
机构
[1] Orange Labs, R&D, Grenoble, France
[2] INSA Lyon, LIRIS, UMR CNRS 5205, F-69621 Villeurbanne, France
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II | 2016年 / 9887卷
关键词
Siamese neural network; Metric learning; Polar sine; Gesture recognition;
D O I
10.1007/978-3-319-44781-0_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our work focuses on metric learning between gesture sample signatures using Siamese Neural Networks (SNN), which aims at modeling semantic relations between classes to extract discriminative features. Our contribution is the notion of polar sine which enables a redefinition of the angular problem. Our final proposal improves inertial gesture classification in two challenging test scenarios, with respective average classification rates of 0.934 +/- 0.011 and 0.776 +/- 0.025.
引用
收藏
页码:406 / 414
页数:9
相关论文
共 14 条
[1]  
Akl A., 2010, ICASSP
[2]  
[Anonymous], 2011, Proceedings of the fifteenth conference on computational natural language learning
[3]  
Berlemont S., 2015, AFGR
[4]  
Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
[5]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[6]  
Duffner S, 2014, INT CONF ACOUST SPEE, DOI 10.1109/ICASSP.2014.6854641
[7]  
Hadsell R., 2006, IEEE C COMPUT VIS PA, P1735, DOI DOI 10.1109/CVPR.2006.100
[8]  
LEFEBVRE G, 2013, AVSS, P238
[9]  
Lefebvre G, 2013, LECT NOTES COMPUT SC, V8131, P381, DOI 10.1007/978-3-642-40728-4_48
[10]   On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions [J].
Lerman, Gilad ;
Whitehouse, J. Tyler .
JOURNAL OF APPROXIMATION THEORY, 2009, 156 (01) :52-81