FRET microscopy in the living cell: Different approaches, strengths and weaknesses

被引:114
作者
Padilla-Parra, Sergi [3 ]
Tramier, Marc [1 ,2 ]
机构
[1] CNRS, Inst Genet & Dev Rennes, UMR 6061, Rennes, France
[2] Univ Rennes 1, Fac Med, UEB, IFR 140, Rennes, France
[3] Emory Univ, Dept Pediat, Atlanta, GA 30322 USA
关键词
biochemical activities; FLIM; fluorescence microscopy; protein-protein interactions; SINGLE-MOLECULE; FLUORESCENT PROTEINS; FLIM; EFFICIENCY; STOICHIOMETRY; ACTIVATION; RESOLUTION; NETWORKS; SURFACE; PHOTON;
D O I
10.1002/bies.201100086
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
New imaging methodologies in quantitative fluorescence microscopy, such as Forster resonance energy transfer (FRET), have been developed in the last few years and are beginning to be extensively applied to biological problems. FRET is employed for the detection and quantification of protein interactions, and of biochemical activities. Herein, we review the different methods to measure FRET in microscopy, and more importantly, their strengths and weaknesses. In our opinion, fluorescence lifetime imaging microscopy (FLIM) is advantageous for detecting inter-molecular interactions quantitatively, the intensity ratio approach representing a valid and straightforward option for detecting intra-molecular FRET. Promising approaches in single molecule techniques and data analysis for quantitative and fast spatio-temporal protein-protein interaction studies open new avenues for FRET in biological research.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 53 条
  • [11] Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy
    Gordon, GW
    Berry, G
    Liang, XH
    Levine, B
    Herman, B
    [J]. BIOPHYSICAL JOURNAL, 1998, 74 (05) : 2702 - 2713
  • [12] Multiplexed FRET to Image Multiple Signaling Events in Live Cells
    Grant, David M.
    Zhang, Wei
    McGhee, Ewan J.
    Bunney, Tom D.
    Talbot, Clifford B.
    Kumar, Sunil
    Munro, Ian
    Dunsby, Christopher
    Neil, Mark A. A.
    Katan, Matilda
    French, Paul M. W.
    [J]. BIOPHYSICAL JOURNAL, 2008, 95 (10) : L69 - L71
  • [13] Grecco HE, 2010, NAT METHODS, V7, P467, DOI [10.1038/NMETH.1458, 10.1038/nmeth.1458]
  • [14] Global analysis of time correlated single photon counting FRET-FLIM data
    Grecco, Hernan E.
    Roda-Navarro, Pedro
    Verveer, Peter J.
    [J]. OPTICS EXPRESS, 2009, 17 (08): : 6493 - 6508
  • [15] Visualization of the Activity of Rac1 Small GTPase in a Cell
    Higashi, Morihiro
    Yu, Jianyong
    Tsuchiya, Hiroshi
    Saito, Teruyoshi
    Oyama, Toshinao
    Kawana, Hidetada
    Kitagawa, Motoo
    Tamaru, Jun-ichi
    Harigaya, Kenichi
    [J]. ACTA HISTOCHEMICA ET CYTOCHEMICA, 2010, 43 (06) : 163 - 168
  • [16] Fluorescence resonance energy transfer-based stoichiometry in living cells
    Hoppe, A
    Christensen, K
    Swanson, JA
    [J]. BIOPHYSICAL JOURNAL, 2002, 83 (06) : 3652 - 3664
  • [17] Functional stoichiometry of the unitary calcium-release-activated calcium channel
    Ji, Wei
    Xu, Pingyong
    Li, Zhengzheng
    Lu, Jingze
    Liu, Lin
    Zhan, Yi
    Chen, Yu
    Hille, Bertil
    Xu, Tao
    Chen, Liangyi
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (36) : 13668 - 13673
  • [18] Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer
    Karasawa, S
    Araki, T
    Nagai, T
    Mizuno, H
    Miyawaki, A
    [J]. BIOCHEMICAL JOURNAL, 2004, 381 : 307 - 312
  • [19] A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons
    Kuner, T
    Augustine, GJ
    [J]. NEURON, 2000, 27 (03) : 447 - 459
  • [20] Lakowicz J.R., 2006, Principles of Fluorescence Spectroscopy, V3rd, DOI DOI 10.1007/978-0-387-46312-4