Bees and Pollens with Communication Strategy for Optimization

被引:1
作者
Pan, Tien-Szu [1 ]
Dao, Thi-Kien [1 ]
Trong-The Nguyen [1 ]
Chu, Shu-Chuan [2 ]
Pan, Jeng-Shyang [3 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
[2] Flinders Univ S Australia, Sch Comp Sci Engn & Math, Adelaide, SA, Australia
[3] Fujian Univ Technol, Coll Informat Sci & Engn, Fuzhou, Peoples R China
来源
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2016, PT II | 2016年 / 9622卷
关键词
Artificial bee colony optimization; Flower pollination algorithm; Multimodal optimization; Communication strategy; ALGORITHM;
D O I
10.1007/978-3-662-49390-8_63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to interference phenomena among constrained dimensions of the multimodal optimization or complex constrained optimization problems, a local optimum is easily converged, rather than for the expected global optimum. The enhanced diversity agent in optimal algorithms is one of the solutions to this issue. This paper proposes a novel optimization algorithm, namely BPO, based on the communication of the bees in artificial bee colony optimization (ABC), with the pollen in flower pollination algorithm (FPA) to solve the multimodal optimization problems. A new communication strategy for Bees and Pollens is presented to explore and exploit the diversity of the algorithm. Six multimodal benchmark functions are used to verify the convergent behavior, the accuracy, and the speed of the proposed algorithm. Experimental results show that the proposed scheme increases the accuracy more than the original algorithms.
引用
收藏
页码:651 / 660
页数:10
相关论文
共 17 条
[1]  
Chang JF, 2005, J INF SCI ENG, V21, P809
[2]  
Dao Thi-Kien., 2015, Journal of Information Hiding and Multimedia Signal Processing, V6, P297
[3]  
Karaboga D, 2008, APPL SOFT COMPUT, V8, P687, DOI 10.1016/j.asoc.2007.05.007
[4]  
Karaboga D., 2005, TR06 ERC U ENG FAC C, VT2005
[5]   A comprehensive survey: artificial bee colony (ABC) algorithm and applications [J].
Karaboga, Dervis ;
Gorkemli, Beyza ;
Ozturk, Celal ;
Karaboga, Nurhan .
ARTIFICIAL INTELLIGENCE REVIEW, 2014, 42 (01) :21-57
[6]  
Pan T.-S., 2015, J COMPUTERS, V254, P14
[7]   A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization [J].
Qu, B. Y. ;
Suganthan, Ponnuthurai Nagaratnam ;
Das, Swagatam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (03) :387-402
[8]  
Suganthan P.N., 2005, PROBLEM DEFINITIONS, V2005
[9]  
Tsai CF, 2014, LECT NOTES COMPUT SC, V8481, P87, DOI 10.1007/978-3-319-07455-9_10
[10]  
Tsai PW, 2009, INT J INNOV COMPUT I, V5, P5081