Programmed Bending Reveals Dynamic Mechanochemical Coupling in Supported Lipid Bilayers

被引:10
|
作者
Gilmore, Sean F. [1 ]
Nanduri, Harika [2 ]
Parikh, Atul N. [1 ,2 ,3 ]
机构
[1] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
来源
PLOS ONE | 2011年 / 6卷 / 12期
基金
美国国家科学基金会;
关键词
MEMBRANE CURVATURE; RAFTS; PROTEINS;
D O I
10.1371/journal.pone.0028517
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In living cells, mechanochemical coupling represents a dynamic means by which membrane components are spatially organized. An extra-ordinary example of such coupling involves curvature-dependent polar localization of chemically-distinct lipid domains at bacterial poles, which also undergo dramatic reequilibration upon subtle changes in their interfacial environment such as during sporulation. Here, we demonstrate that such interfacially-triggered mechanochemical coupling can be recapitulated in vitro by simultaneous, real-time introduction of mechanically-generated periodic curvatures and attendant strain-induced lateral forces in lipid bilayers supported on elastomeric substrates. In particular, we show that real-time wrinkling of the elastomeric substrate prompts a dynamic domain reorganization within the adhering bilayer, producing large, oriented liquid-ordered domains in regions of low curvature. Our results suggest a mechanism in which interfacial forces generated during surface wrinkling and the topographical deformation of the bilayer combine to facilitate dynamic reequilibration prompting the observed domain reorganization. We anticipate this curvature-generating model system will prove to be a simple and versatile tool for a broad range of studies of curvature-dependent dynamic reorganizations in membranes that are constrained by the interfacial elastic and dynamic frameworks such as the cell wall, glycocalyx, and cytoskeleton.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Nanostructure of supported lipid bilayers in water
    Nickel, Bert
    BIOINTERPHASES, 2008, 3 (03) : FC40 - FC46
  • [32] Cell adhesion on supported lipid bilayers
    Andersson, AS
    Glasmästar, K
    Sutherland, D
    Lidberg, U
    Kasemo, B
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 64A (04): : 622 - 629
  • [33] Coupling of proton translocation through ATPase incorporated into supported lipid bilayers to an electrochemical process
    Naumann, R
    Jonczyk, A
    Hampel, C
    Ringsdorf, H
    Knoll, W
    Bunjes, N
    Graber, P
    BIOELECTROCHEMISTRY AND BIOENERGETICS, 1997, 42 (02): : 241 - 247
  • [34] MULTISCALE MODELING OF SUPPORTED LIPID BILAYERS
    Hoopes, Matthew I.
    Xing, Chenyue
    Faller, Roland
    BIOMEMBRANE FRONTIERS: NANOSTRUCTURES, MODELS AND THE DESIGN OF LIFE, VOL 2, 2009, 2 : 101 - +
  • [35] Dynamical heterogeneity in supported lipid bilayers
    Zhang, Liangfang
    Granick, Steve
    MRS BULLETIN, 2006, 31 (07) : 527 - 531
  • [36] Measuring the bending modulus of lipid bilayers with cholesterol
    Nagle, John F.
    PHYSICAL REVIEW E, 2021, 104 (04)
  • [37] Patterned patches of lipid rafts in supported lipid bilayers
    Majd, Sheereen
    Sauer, Anna M.
    Mayer, Michael
    BIOPHYSICAL JOURNAL, 2007, : 356A - 356A
  • [38] Manipulation of lipid bilayers: Micropipette aspiration to supported bilayers.
    Longo, N
    Berger, C
    Schouten, S
    McKiernan, A
    Kimura, F
    Hwang, W
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U682 - U682
  • [39] Domain coupling in asymmetric lipid bilayers
    Kiessling, Volker
    Wan, Chen
    Tamm, Lukas K.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (01): : 64 - 71
  • [40] FLIC Microscopy Reveals Different Conformational States of Syntaxin 1a in Supported Lipid Bilayers
    Kiessling, Volker
    Liang, Binyong
    Tamm, Lukas K.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 248A - 248A