Optical eigenmodes for imaging applications

被引:0
作者
Kosmeier, Sebastian [1 ]
Mazilu, Michael [1 ]
De Luca, Anna Chiara [1 ]
Baumgartl, Joerg [1 ]
Dholakia, Kishan [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
来源
COMPLEX LIGHT AND OPTICAL FORCES VI | 2012年 / 8274卷
基金
英国工程与自然科学研究理事会;
关键词
Optical eigenmodes; Spatial light modulator; Structured light; Beam shaping; Pupil filter; Imaging; Confocal; Superresolution; Image processing; Holography; LATERAL RESOLUTION; MICROSCOPY; LIMIT;
D O I
10.1117/12.912058
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We decompose the light field in the focal plane of an imaging system into a set of optical eigenmodes. Subsequently, the superposition of these eigenmodes is identified, that optimizes certain aspects of the imaging process. In practice, the optical eigenmodes modes are implemented using a liquid crystal spatial light modulator. The optical eigenmodes of a system can be determined fully experimentally, taking aberrations into account. Alternatively, theoretically determined modes can be encoded on an aberration corrected spatial light modulator. Both methods are shown to be feasible for applications. To achieve subdiffractive light focussing, optical eigenmodes are superimposed to minimize the width of the focal spot within a small region of interest. In conjunction with a confocal-like detection process, these spots can be utilized for laser scanning imaging. With optical eigenmode engineered spots we demonstrate enhanced two-point resolution compared to the diffraction limited focus and a Bessel beam. Furthermore, using a first order ghost imaging technique, optical eigenmodes can be used for phase sensitive indirect imaging. Numerically we show the phase sensitivity by projecting optical eigenmodes onto a Laguerre-Gaussian target with a unit vortex charge. Experimentally the method is verified by indirect imaging of a transmissive sample.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Optically mediated particle clearing using Airy wavepackets [J].
Baumgartl, Joerg ;
Mazilu, Michael ;
Dholakia, Kishan .
NATURE PHOTONICS, 2008, 2 (11) :675-678
[2]   Far field subwavelength focusing using optical eigenmodes [J].
Baumgartl, Joerg ;
Kosmeier, Sebastian ;
Mazilu, Michael ;
Rogers, Edward T. F. ;
Zheludev, Nikolay I. ;
Dholakia, Kishan .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[3]   Axial superresolution with ultrahigh aperture lenses [J].
Blanca, CM ;
Hell, SW .
OPTICS EXPRESS, 2002, 10 (17) :893-898
[4]   Optical eigenmode imaging [J].
De Luca, Anna Chiara ;
Kosmeier, Sebastian ;
Dholakia, Kishan ;
Mazilu, Michael .
PHYSICAL REVIEW A, 2011, 84 (02)
[5]  
FRIEDEN BR, 1969, J MOD OPTIC, V16, P795
[6]   Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J].
Gustafsson, MGL .
JOURNAL OF MICROSCOPY, 2000, 198 (02) :82-87
[7]   BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY [J].
HELL, SW ;
WICHMANN, J .
OPTICS LETTERS, 1994, 19 (11) :780-782
[8]   Demonstration of High Lateral Resolution in Laser Confocal Microscopy Using Annular and Radially Polarized Light [J].
Kim, Jeongyong ;
Kim, Dae-Chul ;
Back, Seng-Hun .
MICROSCOPY RESEARCH AND TECHNIQUE, 2009, 72 (06) :441-446
[9]   Enhanced two-point resolution using optical eigenmode optimized pupil functions [J].
Kosmeier, S. ;
Mazilu, M. ;
Baumgartl, J. ;
Dholakia, K. .
JOURNAL OF OPTICS, 2011, 13 (10)
[10]   Observation of three-dimensional optical stacking of microparticles using a single Laguerre-Gaussian beam [J].
Lee, WM ;
Yuan, XC .
APPLIED PHYSICS LETTERS, 2003, 83 (25) :5124-5126