共 26 条
Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target
被引:134
作者:
Xiong, Zhongmin
[1
]
Kushner, Mark J.
[1
]
机构:
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词:
PLASMA;
DISCHARGE;
BREAKDOWN;
D O I:
10.1088/0963-0252/21/3/034001
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
Atmospheric pressure ionization waves (IWs) propagating in flexible capillary tubes are a unique way of transporting a plasma and its active species to remote sites for applications such as biomedical procedures, particularly in endoscopic procedures. The propagation mechanisms for such IWs in tubes having aspect ratios of hundreds to thousands are not clear. In this paper, results are discussed from a numerical investigation of the fundamental properties of ionization waves generated by nanosecond voltage pulses inside a 15 cm long, 600 mu m wide (aspect ratio 250), flexible dielectric channel. The channel, filled with a Ne/Xe = 99.9/0.1 gas mixture at 1 atm, empties into a small chamber separated from a target substrate by 1 cm. The IWs propagate through the entire length of the channel while maintaining similar strength and magnitude. Upon exiting the channel into the chamber, the IW induces a second streamer discharge at the channel-chamber junction. This streamer then propagates across the chamber and impinges upon the target. The average speeds of the capillary-bounded IW are about 5 x 10(7) cm s(-1) and 1 x 10(8) cm s(-1) for positive and negative polarities, respectively. The propagation speed is sensitive to the curvature of the channel. In both cases, the peak in ionization tends to be located along the channel walls and alternates from side-to-side depending on the direction of the local instantaneous electric field and curvature of the channel. The ionization region following the IW extends up to several centimeters inside the channel, as opposed to being highly localized at the ionization front in unconstrained, atmospheric pressure IWs. The maximum speed of the IW in the chamber is about twice that in the channel.
引用
收藏
页数:13
相关论文