Improved mechanical property of nanolaminated graphene (reduced graphene oxide)/Al-Mg-Si composite rendered by facilitated ageing process

被引:20
作者
Han, Yifan [1 ]
Ke, Yubin [2 ]
Shi, Yan [1 ]
Liu, Yu [1 ]
Yang, Ganting [1 ]
Li, Zhiqiang [1 ]
Xiong, Ding-Bang [1 ]
Zou, Jin [3 ]
Guo, Qiang [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Dongguan Branch, China Spallat Neutron Source, Dongguan 523803, Peoples R China
[3] Univ Queensland, Mat Engn & Ctr Microscopy & Microanal, St Lucia, Qld 4072, Australia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2020年 / 787卷
关键词
Metal matrix composites (MMCs); Nanolaminated structure; Graphene; Precipitation; Mechanical behaviour; HIGH-TENSILE DUCTILITY; AL; DEFORMATION; STRENGTH; BEHAVIOR; PRECIPITATION; PARTICLES; FLOW;
D O I
10.1016/j.msea.2020.139541
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bulk nanolaminated 0.4 wt% graphene (reduced graphene oxide, RGO)-reinforced Al-Mg-Si composite was fabricated using a modified powder metallurgy approach. The peakaged RGO-Al composite had significantly higher uniaxial yield (236.2. 10.8 MPa) and tensile strengths (320.3 +/- 4.0 MPa), but shared similar uniform elongation (9.8 +/- 0.5%) as compared to their unreinforced counterpart. These values are comparable or superior to the same series of alloys subject to complex thermo-mechanical treatments. Combining the mechanical test data with site-specific microstructural analysis, we rationalized the strength-ductility synergy in the composite by the refinement of the precipitates and the facilitated precipitation kinetics as a result of RGO incorporation, and the enhanced dislocation storage in the composite.
引用
收藏
页数:9
相关论文
共 50 条
[1]   The crystal structure of the β" phase in Al-Mg-Si alloys [J].
Andersen, SJ ;
Zandbergen, HW ;
Jansen, J ;
Traeholt, C ;
Tundal, U ;
Reiso, O .
ACTA MATERIALIA, 1998, 46 (09) :3283-3298
[2]   Modeling of Strain Hardening in the Aluminum Alloy AA6061 [J].
Bahrami, Abbas ;
Miroux, Alexis ;
Sietsma, Jilt .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (05) :2409-2417
[3]   Thermal Stability, Grain Growth Kinetics, and Mechanical Properties of Bulk Ultrafine-Grained AA6063/SiC Composites with Varying Reinforcement Sizes [J].
Bembalge, O. B. ;
Panigrahi, S. K. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (09) :4288-4306
[4]   Bioinspired design and assembly of platelet reinforced polymer films [J].
Bonderer, Lorenz J. ;
Studart, Andre R. ;
Gauckler, Ludwig J. .
SCIENCE, 2008, 319 (5866) :1069-1073
[5]   Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys [J].
Chen, JH ;
Costan, E ;
van Huis, MA ;
Xu, Q ;
Zandbergen, HW .
SCIENCE, 2006, 312 (5772) :416-419
[6]   Heat treatment behavior and strengthening mechanisms of CNT/6061A1 composites fabricated by flake powder metallurgy [J].
Chen, Malin ;
Fan, Genlian ;
Tan, Zhanqiu ;
Yuan, Chao ;
Guo, Qiang ;
Xiong, Dingbang ;
Chen, Mingliang ;
Zheng, Quan ;
Li, Zhiqiang ;
Zhang, Di .
MATERIALS CHARACTERIZATION, 2019, 153 :261-270
[7]   Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J].
Cheng, S. ;
Zhao, Y. H. ;
Zhu, Y. T. ;
Ma, E. .
ACTA MATERIALIA, 2007, 55 (17) :5822-5832
[8]   Mechanical properties of nacre and highly mineralized bone [J].
Currey, JD ;
Zioupos, P ;
Davies, P ;
Casinos, A .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2001, 268 (1462) :107-111
[9]  
Dowling N., 1993, MECH BEHAV MAT ENG M
[10]  
Dowling N. E., 1999, Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue