The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas

被引:15
|
作者
Kong, Ning [1 ,3 ,4 ]
Zhao, Qi [1 ,3 ,4 ]
Liu, Chang [1 ,3 ,4 ]
Li, Jiaxin [1 ,3 ,4 ]
Liu, Zhaoqun [1 ,3 ,4 ]
Gao, Lei [1 ,3 ,4 ]
Wang, Lingling [1 ,3 ,4 ]
Song, Linsheng [1 ,2 ,3 ,4 ]
机构
[1] Dalian Ocean Univ, Liaoning Key Lab Marine Anim Immunol, Dalian 116023, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Funct Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266235, Peoples R China
[3] Dalian Ocean Univ, Liaoning Key Lab Marine Anim Immunol & Dis Contro, Dalian 116023, Peoples R China
[4] Dalian Ocean Univ, Dalian Key Lab Aquat Anim Dis Prevent & Control, Dalian 116023, Peoples R China
基金
美国国家科学基金会;
关键词
Crassostrea gigas; Zinc transporter; Zinc content; Phylogenetic analysis; Gene expression; GENE-EXPRESSION; ZIP; TRANSCRIPTION; FAMILY; ROLES;
D O I
10.1016/j.gene.2020.144759
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Zinc transporters play vital roles in regulating zinc content and localization by mobilizing zinc across cellular and intracellular membranes. Pacific oyster Crassostrea gigas is one of the most zinc-rich animals, which has been regarded as an excellent food for zinc supplement. But the information about zinc transporters and their involvements in zinc accumulation in oysters is still limited. In the present study, a total of 28 zinc transporter genes, including nine Zinc transporter genes (CgZnTs) and 19 Zrt/Irt-like protein genes (CgZIPs), were identified in C. gigas genome using a genome-wide search strategy. There were five ZIP10 homologs in C. gigas, which were much more than those in mammals, fish and other mollusks. Among oyster zinc transporters, immense variations were detected in their gene structure, protein length and physicochemical properties. Phylogenetic analysis showed that most of these transporters were distinctly clustered with their homologs from Homo sapiens, Danio rerio and other mollusks, and the most closely related transporters shared similar motif compositions. The highest zinc content was detected in the oyster mantle and gill, while the lowest level was found in the adductor muscle. The mRNA of all tested CgZnTs and CgZIPs were constitutively expressed in oyster tissues, and most of them were highly expressed in the gill or hepatopancreas. The analysis of RNA-seq data from gill and hepatopancreas showed that all the transporters exhibited divergent response patterns under zinc stress, except for CgZIP4 whose expression was almost undetectable in the two tissues. The results indicated that zinc transporters played important roles in the regulation of zinc homeostasis in C. gigas, which provided a solid foundation for further functional analysis of zinc transporters in oysters and other mollusks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Involvement of metabotropic glutamate receptors in regulation of immune response in the Pacific oyster Crassostrea gigas
    Zhang, Xueshu
    Si, Yiran
    Zhang, Linfang
    Wen, Xue
    Yang, Chuanyan
    Wang, Lingling
    Song, Linsheng
    FISH & SHELLFISH IMMUNOLOGY, 2024, 151
  • [22] Transcriptome response of the Pacific oyster, Crassostrea gigas susceptible to thermal stress: A comparison with the response of tolerant oyster
    Kim, Bo-Mi
    Kim, Kyobum
    Choi, Ik-Young
    Rhee, Jae-Sung
    MOLECULAR & CELLULAR TOXICOLOGY, 2017, 13 (01) : 105 - 113
  • [23] Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas
    Song, Kai
    Wen, Shiyong
    Zhang, Guofan
    MARINE BIOTECHNOLOGY, 2019, 21 (05) : 614 - 622
  • [24] Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas
    Hedgecock, Dennis
    Davis, Jonathan P.
    AQUACULTURE, 2007, 272 : S17 - S29
  • [25] Sterol metabolism of Pacific oyster (Crassostrea gigas) spat
    Knauer, J
    Kerr, RG
    Lindley, D
    Southgate, PC
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 119 (01): : 81 - 84
  • [26] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (05) : 1145 - 1152
  • [27] Inheritance of shell pigmentation in Pacific oyster Crassostrea gigas
    Xu, Chengxun
    Li, Qi
    Yu, Hong
    Liu, Shikai
    Kong, Lingfeng
    Chong, Jindou
    AQUACULTURE, 2019, 512
  • [28] Identification of Melanin in the Mantle of the Pacific Oyster Crassostrea gigas
    Han, Yijing
    Xie, Chaoyi
    Fan, Nini
    Song, Hongce
    Wang, Xiaomei
    Zheng, Yanxin
    Zhang, Meiwei
    Liu, Yaqiong
    Huang, Baoyu
    Wei, Lei
    Wang, Xiaotong
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [29] The immunological capacity in the larvae of Pacific oyster Crassostrea gigas
    Song, Xiaorui
    Wang, Hao
    Xin, Lusheng
    Xu, Jiachao
    Jia, Zhihao
    Wang, Lingling
    Song, Linsheng
    FISH & SHELLFISH IMMUNOLOGY, 2016, 49 : 461 - 469
  • [30] Developmental dynamics of myogenesis in Pacific oyster Crassostrea gigas
    Li, Huijuan
    Li, Qi
    Yu, Hong
    Du, Shaojun
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2019, 227 : 21 - 30