Lower semicontinuity of mappings with bounded (θ, 1)-weighted (p, q)-distortion

被引:5
作者
Vodop'yanov, S. K. [1 ]
Molchanova, A. O. [1 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
bounded; (theta; 1)-weighted; (p; q)-distortion; lower semicontinuity; finite distortion; NONLINEAR ELASTICITY; FINITE DISTORTION; SOBOLEV CLASSES; REGULARITY;
D O I
10.1134/S0037446616050062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, under some extra conditions, the locally uniform limit of mappings with bounded (theta, 1)-weighted (p, q)-distortion is a mapping of bounded (theta, 1)-weighted (p, q)-distortion too. Moreover, we obtain the lower semicontinuity of the distortion coefficients.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 1989, Space Mappings of Bounded Distortion, Translations of Mathematical Monographs
[2]  
[Anonymous], 1993, QUASIREGULAR MAPPING
[3]   Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded (p, q)-distortion [J].
Baykin, A. N. ;
Vodop'yanov, S. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) :237-261
[4]  
BROOKS JK, 1983, LECT NOTES MATH, V1033, P79
[5]   CONTINUITY AND COMPACTNESS OF MEASURES [J].
BROOKS, JK ;
CHACON, RV .
ADVANCES IN MATHEMATICS, 1980, 37 (01) :16-26
[6]  
Greco L., 2008, REND ACCAD SCI FIS, V75, P53
[7]  
Heinonen J., 1993, Oxford Mathematical Monographs
[8]  
IWANIEC T, 2001, Oxford Math. Monogr.
[9]   Hyperelastic Deformations of Smallest Total Energy [J].
Iwaniec, Tadeusz ;
Onninen, Jani .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (03) :927-986
[10]   TOWARD THE THEORY OF ORLICZ-SOBOLEV CLASSES [J].
Kovtonyuk, D. A. ;
Ryazanov, V. I. ;
Salimov, R. R. ;
Sevost'yanov, E. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) :929-963