Background-Aware 3-D Point Cloud Segmentation With Dynamic Point Feature Aggregation

被引:33
作者
Chen, Jiajing [1 ]
Kakillioglu, Burak [1 ]
Velipasalar, Senem [1 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
美国国家科学基金会;
关键词
Three-dimensional displays; Point cloud compression; Semantics; Aggregates; Task analysis; Encoding; Convolutional neural networks; 3-D; aggregation; feature; point cloud; segmentation;
D O I
10.1109/TGRS.2022.3168555
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the proliferation of LiDAR sensors and 3-D vision cameras, 3-D point cloud analysis has attracted significant attention in recent years. In this article, we propose a novel 3-D point cloud learning network, referred to as dynamic point feature aggregation network (DPFA-Net), by selectively performing the neighborhood feature aggregation (FA) with dynamic pooling and an attention mechanism. DPFA-Net has two variants for semantic segmentation and classification of 3-D point clouds. As the core module of the DPFA-Net, we propose an FA layer, in which features of the dynamic neighborhood of each point are aggregated via a self-attention mechanism. In contrast to other segmentation models, which aggregate features from fixed neighborhoods, our approach can aggregate features from different neighbors in different layers providing a more selective and broader view to the query points and focusing more on the relevant features in a local neighborhood. In addition, to further improve the performance of semantic segmentation, we exploit the background-foreground (BF) information and present two novel approaches, namely, two-stage BF-Net and BF regularization. Experimental results show that the proposed DPFA-Net achieves the state-of-the-art overall accuracy score of 89.22% for semantic segmentation on the Stanford large-scale 3-D Indoor Spaces (S3DIS) dataset and provides consistently satisfactory performance across different tasks of semantic segmentation, part segmentation, and 3-D object classification. Our model achieves 93.1% accuracy on the ModelNet40 dataset and provides a mean shape intersection-over-union (IoU) value of 85.5% for part segmentation on the ShapeNet-Part dataset. It is also computationally more efficient compared to other methods.
引用
收藏
页数:12
相关论文
共 48 条
[1]   3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels [J].
Alexandre, Luis A. .
INTELLIGENT AUTONOMOUS SYSTEMS 13, 2016, 302 :888-897
[2]  
[Anonymous], 2017, NEIGHBORSDO HELP DEE
[3]  
Armeni I., 2017, CoRR abs/1702.01105
[4]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[5]   Point Convolutional Neural Networks by Extension Operators [J].
Atzmon, Matan ;
Maron, Haggai ;
Lipman, Yaron .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[6]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[7]   Hierarchical Grow Network for Point Cloud Segmentation [J].
Chen, Jiajing ;
Kakillioglu, Burak ;
Velipasalar, Senem .
2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, :1558-1562
[8]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds [J].
Hu, Qingyong ;
Yang, Bo ;
Xie, Linhai ;
Rosa, Stefano ;
Guo, Yulan ;
Wang, Zhihua ;
Trigoni, Niki ;
Markham, Andrew .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11105-11114