Positive rotationally symmetric solutions for a Dirichlet problem involving the higher mean curvature operator in Minkowski space

被引:7
作者
Ma, Ruyun [1 ]
Xu, Man [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Higher mean curvature function; Minkowski spacetime; Positive solutions; Bifurcation; PRESCRIBED SCALAR CURVATURE; BOUNDARY-VALUE-PROBLEMS; GLOBAL STRUCTURE; RADIAL SOLUTIONS; HYPERSURFACES; EXISTENCE; EQUATION;
D O I
10.1016/j.jmaa.2017.11.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the global behavior of positive rotationally symmetric solutions for Dirichlet problem involving the k-th mean curvature operator in Minkowski space Ln+1, which is not elliptic for k > 1. The proofs of our main results are based upon bifurcation techniques. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[2]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[3]  
[Anonymous], 2012, GRAD STUD MATH
[4]   Ground state solution for a problem with mean curvature operator in Minkowski space [J].
Azzollini, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2086-2095
[5]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[6]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[7]  
Bayard P, 2003, CALC VAR PARTIAL DIF, V18, P1, DOI 10.1007/s00526-002-0178-5
[8]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[9]   Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :270-287
[10]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419