A generalized sharp Whitney theorem for jets

被引:0
作者
Fefferman, C [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
extension problems; Whitney convexity; Whitney omega-convexity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that, for each point x in a given subset E subset of R-n, we are given an m-jet f (x) and a convex, symmetric set sigma(x) of m-jets at x. We ask whether there exist a function F epsilon C-m,C-w(R-n) and a finite constant M, such that the m-jet of F at x belongs to f (x) + M sigma(x) for all x epsilon E. We give a necessary and sufficient condition for the existence of such F, M, provided each sigma(x) satisfies a condition that we call "Whitney w-convexity".
引用
收藏
页码:577 / 688
页数:112
相关论文
共 23 条
[11]  
FERRERMAN C, 2005, ANN MATH, V161, P509
[12]  
FERRERMAN C, 2005, REV MAT IBEROAM, V21, P313
[13]  
Glaeser G., 1958, J. Analyse Math., V6, P1, DOI DOI 10.1007/BF02790231
[14]  
MALGRANGE B, 1966, IDEALS DIFFERENTIABL
[15]  
SHVARTSMAN PA, 1987, SIBERIAN MATH J+, V28, P853
[16]   Lipschitz Selections of Set-Valued Mappings and Helly's Theorem [J].
Shvartsman, Pavel .
JOURNAL OF GEOMETRIC ANALYSIS, 2002, 12 (02) :289-324
[17]  
Stein E. M., 1970, SINGULAR INTEGRALS D
[18]  
Webster R., 1994, Convexity
[19]   Functions differentiable on the boundaries of regions [J].
Whitney, H .
ANNALS OF MATHEMATICS, 1934, 35 :482-485
[20]   Differentiable functions defined in closed sets. [J].
Whitney, Hassler .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1934, 36 (1-4) :369-387