A generalized sharp Whitney theorem for jets

被引:0
作者
Fefferman, C [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
extension problems; Whitney convexity; Whitney omega-convexity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that, for each point x in a given subset E subset of R-n, we are given an m-jet f (x) and a convex, symmetric set sigma(x) of m-jets at x. We ask whether there exist a function F epsilon C-m,C-w(R-n) and a finite constant M, such that the m-jet of F at x belongs to f (x) + M sigma(x) for all x epsilon E. We give a necessary and sufficient condition for the existence of such F, M, provided each sigma(x) satisfies a condition that we call "Whitney w-convexity".
引用
收藏
页码:577 / 688
页数:112
相关论文
共 23 条
[1]  
[Anonymous], FUNCT ANAL APPL
[2]  
[Anonymous], SOVIET MATH DOKL
[3]   Differentiable functions defined in closed sets. A problem of Whitney [J].
Bierstone, E ;
Milman, PD ;
Pawlucki, W .
INVENTIONES MATHEMATICAE, 2003, 151 (02) :329-352
[4]  
BIERSTONE E, IN PRESS ANN MATH
[5]   Whitney's extension problem for multivariate C1,w-functions [J].
Brudnyi, Y ;
Shvartsman, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2487-2512
[6]  
BRUDNYI Y, 1997, J GEOM ANAL, V7, P515
[7]  
BRUDNYI Y, 1985, DOKL AKAD NAUK SSSR, V280, P268
[8]  
BRUDNYI Y, 1994, INT MATH RES NOTICES, P129
[9]  
FEFFERMAN C, WHITNEYS EXTENSION P
[10]  
FEFFERMAN C, IN PRESS ANN MATH