Mitochondrial pore opening and loss of Ca2+ exchanger NCLX levels occur after frataxin depletion

被引:31
作者
Purroy, R. [1 ]
Britti, E. [1 ]
Delaspre, F. [1 ]
Tamarit, J. [1 ]
Ros, J. [1 ]
机构
[1] Univ Lleida, Dept Ciencies Med Basiques, Fac Med, IRB Lleida, Lleida, Spain
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE | 2018年 / 1864卷 / 02期
关键词
Frataxin; NCLX; Mitochondrial permeability transition pore (MPTP); NFAT3; Cyclosporin A; PERMEABILITY TRANSITION PORE; ALTERED LIPID-METABOLISM; CYCLOSPORINE-A; TRANSCRIPTION FACTOR; INNER MEMBRANE; OXIDATIVE STRESS; GENE-EXPRESSION; NUCLEAR-FACTOR; MOUSE MODELS; CELL-DEATH;
D O I
10.1016/j.bbadis.2017.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Frataxin-deficient neonatal rat cardiomyocytes and dorsal root ganglia neurons have been used as cell models of Friedreich ataxia. In previous work we show that frataxin depletion resulted in mitochondrial swelling and lipid droplet accumulation in cardiomyocytes, and compromised DRG neurons survival. Now, we show that these cells display reduced levels of the mitochondrial calcium transporter NCLX that can be restored by calcium-chelating agents and by external addition of frataxin fused to TAT peptide. Also, the transcription factor NFAT3, involved in cardiac hypertrophy and apoptosis, becomes activated by dephosphorylation in both cardiomyocytes and DRG neurons. In cardiomyocytes, frataxin depletion also results in mitochondrial permeability transition pore opening. Since the pore opening can be inhibited by cyclosporin A, we show that this treatment reduces lipid droplets and mitochondrial swelling in cardiomyocytes, restores DRG neuron survival and inhibits NFAT dephosphorylation. These results highlight the importance of calcium homeostasis and that targeting mitochondrial pore by repurposing cyclosporin A, could be envisaged as a new strategy to treat the disease.
引用
收藏
页码:618 / 631
页数:14
相关论文
共 76 条
[1]   Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity [J].
Abramov, Andrey Y. ;
Duchen, Michael R. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2008, 1777 (7-8) :953-964
[2]  
Altschuld R.A., 1992, AM J PHYSIOL-HEART C, P262
[3]   Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons [J].
Barsukova, Anna ;
Komarov, Alexander ;
Hajnoczky, Gyoergy ;
Bernardi, Paolo ;
Bourdette, Dennis ;
Forte, Michael .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2011, 33 (05) :831-842
[4]   The transcription factor NFAT3 mediates neuronal survival [J].
Benedito, AB ;
Lehtinen, M ;
Massol, R ;
Lopes, UG ;
Kirchhausen, T ;
Rao, A ;
Bonni, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (04) :2818-2825
[5]   The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection [J].
Bernardi, Paolo ;
Di Lisa, Fabio .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2015, 78 :100-106
[6]   The mitochondrial permeability transition pore: a mystery solved? [J].
Bernardi, Paolo .
FRONTIERS IN PHYSIOLOGY, 2013, 4
[7]   NCLX: The mitochondrial sodium calcium exchanger [J].
Boyman, Liron ;
Williams, George S. B. ;
Khananshvili, Daniel ;
Sekler, Israel ;
Lederer, W. J. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2013, 59 :205-213
[8]  
Britti E, 2017, J CELL MOL MED
[9]   Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion [J].
Campuzano, V ;
Montermini, L ;
Molto, MD ;
Pianese, L ;
Cossee, M ;
Cavalcanti, F ;
Monros, E ;
Rodius, F ;
Duclos, F ;
Monticelli, A ;
Zara, F ;
Canizares, J ;
Koutnikova, H ;
Bidichandani, SI ;
Gellera, C ;
Brice, A ;
Trouillas, P ;
DeMichele, G ;
Filla, A ;
DeFrutos, R ;
Palau, F ;
Patel, PI ;
DiDonato, S ;
Mandel, JL ;
Cocozza, S ;
Koenig, M ;
Pandolfo, M .
SCIENCE, 1996, 271 (5254) :1423-1427
[10]   RELEASE OF CALCIUM FROM HEART-MITOCHONDRIA BY SODIUM [J].
CARAFOLI, E ;
TIOZZO, R ;
LUGLI, G ;
CROVETTI, F ;
KRATZING, C .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1974, 6 (04) :361-371