Automated data scanning for dense networks of low-cost air quality instruments: Detection and differentiation of instrumental error and local to regional scale environmental abnormalities

被引:9
作者
Alavi-Shoshtari, Maryam [1 ]
Salmond, Jennifer Ann [2 ]
Giurcaneanu, Ciprian Doru [3 ]
Miskell, Georgia [1 ]
Weissert, Lena [1 ]
Williams, David Edward [1 ]
机构
[1] Auckland Mail Ctr, Sch Chem Sci, Private Bag 92019, Auckland 1142, New Zealand
[2] Auckland Mail Ctr, Sch Environm, Private Bag 92019, Auckland 1142, New Zealand
[3] Auckland Mail Ctr, Dept Stat, Private Bag 92019, Auckland 1142, New Zealand
关键词
Change-point detection; Linear multi-regression; Sensor networks; Data reliability; SPECTRAL-ANALYSIS; NITROGEN-DIOXIDE; OZONE; POLLUTION; REGRESSION; MODEL; PERFORMANCE; EXPOSURE; SENSORS;
D O I
10.1016/j.envsoft.2017.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent improvements in low-cost air quality instrumentation make deployment of dense networks of sensors possible. However, the shear volume of data from these networks means that traditional methods for data quality control and data analysis are no longer viable. We propose a real-time data scanning routine that detects local and regional variability within the data sets. This can be used to differentiate errors resulting from instrument malfunction or calibration drifts from natural (environmentally driven) regional changes in ambient concentrations. Our case study considered hourly-averaged ozone data from Texas and from two networks in Vancouver. We used 7 and 28 days of data for the algorithm initialisation with simulated and real instrumental changes. The algorithm output can be used as part of a limited resource maintenance schedule for sensor networks, and to improve understanding of air quality processes and their relation to environmental and public health data. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 56 条
[1]   Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK [J].
Adams, HS ;
Nieuwenhuijsen, MJ ;
Colvile, RN ;
McMullen, MAS ;
Khandelwal, P .
SCIENCE OF THE TOTAL ENVIRONMENT, 2001, 279 (1-3) :29-44
[2]   Application of an entropy-based Bayesian optimization technique to the redesign of an existing monitoring network for single air pollutants [J].
Ainslie, B. ;
Reuten, C. ;
Steyn, D. G. ;
Le, Nhu D. ;
Zidek, James V. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2009, 90 (08) :2715-2729
[3]   Detection of malfunctions in sensor networks [J].
Alavi-Shoshtari, Maryam ;
Williams, David E. ;
Salmond, Jennifer A. ;
Kaipio, Jari P. .
ENVIRONMETRICS, 2013, 24 (04) :227-236
[4]  
[Anonymous], 2007, Information and Complexity in Statistical Modeling
[5]   The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies [J].
Arain, M. A. ;
Blair, R. ;
Finkelstein, N. ;
Brook, J. R. ;
Sahsuvaroglu, T. ;
Beckerman, B. ;
Zhang, L. ;
Jerrett, M. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (16) :3453-3464
[6]  
Balzano Laura, 2008, Blind Calibration of Networks of Sensors: Theory and Algorithms, P9, DOI [DOI 10.1007/978-0-387-68845-9_1, 10.1007/978-0-387-68845-9_1]
[7]   High Density Ozone Monitoring Using Gas Sensitive Semi-Conductor Sensors in the Lower Fraser Valley, British Columbia [J].
Bart, Mark ;
Williams, David E. ;
Ainslie, Bruce ;
McKendry, Ian ;
Salmond, Jennifer ;
Grange, Stuart K. ;
Alavi-Shoshtari, Maryam ;
Steyn, Douw ;
Henshaw, Geoff S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (07) :3970-3977
[8]  
Bordignon S, 2000, ENVIRONMETRICS, V11, P125, DOI 10.1002/(SICI)1099-095X(200003/04)11:2<125::AID-ENV392>3.0.CO
[9]  
2-8
[10]   Spectral analysis of atmospheric composition: application to surface ozone model-measurement comparisons [J].
Bowdalo, Dene R. ;
Evans, Mathew J. ;
Sofen, Eric D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (13) :8295-8308