Large monochromatic components and long monochromatic cycles in random hypergraphs

被引:5
作者
Bennett, Patrick [1 ]
DeBiasio, Louis [2 ]
Dudek, Andrzej [1 ]
English, Sean [1 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Miami Univ, Dept Math, Oxford, OH 45056 USA
关键词
RAMSEY NUMBER; SUBGRAPHS;
D O I
10.1016/j.ejc.2018.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend results of Cyarfas and Furedi on the largest monochromatic component in r-colored complete k-uniform hypergraphs to the setting of random hypergraphs. We also study long monochromatic loose cycles in r-colored random hypergraphs. In particular, we obtain a random analog of a result of Gyarfas, Sarkozy, and Szemeredi on the longest monochromatic loose cycle in 2-colored complete k-uniform hypergraphs. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 21 条
[1]  
Bal D., 2017, Electron. J. Combin, V24, P25
[2]   Long cycles in subgraphs of (pseudo)random directed graphs [J].
Ben-Eliezer, Ido ;
Krivelevich, Michael ;
Sudakov, Benny .
JOURNAL OF GRAPH THEORY, 2012, 70 (03) :284-296
[3]   The size Ramsey number of a directed path [J].
Ben-Eliezer, Ido ;
Krivelevich, Michael ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) :743-755
[4]  
Conlon D, 2014, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, P303
[5]   ON SOME MULTICOLOR RAMSEY PROPERTIES OF RANDOM GRAPHS [J].
Dudek, Andrzej ;
Pralat, Pawel .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (03) :2079-2092
[6]   An Alternative Proof of the Linearity of the Size-Ramsey Number of Paths [J].
Dudek, Andrzej ;
Pralat, Pawel .
COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (03) :551-555
[7]  
FUREDI Z, 1991, EUR J COMBIN, V12, P483
[8]   MAXIMUM DEGREE AND FRACTIONAL MATCHINGS IN UNIFORM HYPERGRAPHS [J].
FUREDI, Z .
COMBINATORICA, 1981, 1 (02) :155-162
[9]  
Gyarf A., 1977, TANULMANYOK MTA SZAM, P62
[10]  
Gyarfas A., 2008, ELECTRON J COMB, V15, P14