Intelligent Sound Monitoring and Identification System Combining Triboelectric Nanogenerator-Based Self-Powered Sensor with Deep Learning Technique

被引:51
作者
Yao, Hongbo [1 ]
Wang, Zhixin [1 ]
Wu, Yonghui [1 ]
Zhang, Yuanzheng [1 ]
Miao, Kexin [1 ]
Cui, Ming [1 ]
Ao, Tianyong [1 ]
Zhang, Jiawei [1 ]
Ban, Dayan [2 ,3 ,4 ]
Zheng, Haiwu [1 ]
机构
[1] Henan Univ, Henan Prov Engn Res Ctr Smart Micronano Sensing T, Sch Phys & Elect, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Henan, Peoples R China
[3] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
deep neural networks; self-powered sensor; sound recognition; triboelectric nanogenerators; ubiquitous sensor networks; ENERGY;
D O I
10.1002/adfm.202112155
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Urban sound management is required in a variety of fields such as transportation, security, water conservancy and construction, among others. Given the diverse array of available noise sensors and the widespread opportunity to connect these sensors via mobile broadband Internet access, many researchers are eager to apply sound-sensor networks for urban sound management. Existing sensing networks typically consist of expensive information-sensing devices, the cost and maintenance of which limit their large-scale, ubiquitous deployment, thus narrowing their functional measurement range. Herein, an innovative, low-cost, sound-driven triboelectric nanogenerator (SDTENG)-based self-powered sensor is proposed, from which the SDTENG is primarily comprised of fluorinated ethylene propylene membranes, conductive fabrics, acrylic shells, and Kapton spacers. The SDTENG-based sensor has been integrated with a deep learning technique in the present study to construct an intelligent sound monitoring and identification system, which is capable of recognizing a suite of common road and traffic sounds with high classification accuracies of 99% in most cases. The novel SDTENG-based self-powered sensor combined with deep learning technique demonstrates a tremendous application potential in urban sound management, which will show the excellent application prospects in the field of ubiquitous sensor networks.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A triboelectric nanogenerator-based self-powered long-distance wireless sensing platform for industries and environment monitoring
    Zhang, Chi
    Zhang, Kaihang
    Lu, Jiaqi
    Xu, Liangquan
    Wu, Jianhui
    Li, Jie
    Liu, Shuting
    Xuan, Weipeng
    Chen, Jinkai
    Jin, Hao
    Dong, Shurong
    Luo, Jikui
    NANO RESEARCH, 2024, 17 (11) : 9704 - 9711
  • [22] A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator
    Fang, Lin
    Zheng, Qiwei
    Hou, Wenchi
    Zheng, Li
    Li, Hexing
    NANO ENERGY, 2022, 97
  • [23] Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring
    Meng, Xiaoyi
    Cheng, Qian
    Jiang, Xiaobei
    Fang, Zhen
    Chen, Xianxiang
    Li, Shaoqing
    Li, Chenggang
    Sun, Chunwen
    Wang, Wuhong
    Wang, Zhong Lin
    NANO ENERGY, 2018, 51 : 721 - 727
  • [24] Advanced triboelectric nanogenerator based self-powered electrochemical system
    Xuan, Ningning
    Song, Chunhui
    Cheng, Gang
    Du, Zuliang
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [25] Self-Powered Sensor Based on Triboelectric Nanogenerator for Landslide Displacement Measurement
    Chen, Jinguo
    Zou, Hao
    Pan, Guangzhi
    Mao, Shuai
    Chen, Bing
    Wu, Chuan
    JOURNAL OF SENSORS, 2024, 2024
  • [26] Research on the self-powered downhole vibration sensor based on triboelectric nanogenerator
    Chuan, Wu
    He, Huang
    Shuo, Yang
    Fan, Chenxing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (22) : 6427 - 6434
  • [27] A Self-Powered Multifunctional Sensor for Downhole Motor Based on Triboelectric Nanogenerator
    Xu, Jie
    Wang, Yu
    Kong, Lingrong
    Wu, Chuan
    Su, Shida
    Rong, Heqi
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8252 - 8260
  • [28] A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
    Li, Chengyu
    Wang, Ziming
    Shu, Sheng
    Tang, Wei
    MICROMACHINES, 2021, 12 (03) : 1 - 10
  • [29] Self-Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming
    Liang, Xi
    Liu, Shijie
    Ren, Zewei
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (35)
  • [30] A Self-Powered and Highly Accurate Vibration Sensor Based on Bouncing-Ball Triboelectric Nanogenerator for Intelligent Ship Machinery Monitoring
    Du, Taili
    Zuo, Xusheng
    Dong, Fangyang
    Li, Shunqi
    Mtui, Anaeli Elibariki
    Zou, Yongjiu
    Zhang, Peng
    Zhao, Junhao
    Zhang, Yuewen
    Sun, Peiting
    Xu, Minyi
    MICROMACHINES, 2021, 12 (02)