Efficacy of a Deep Learning Convolutional Neural Network System for Melanoma Diagnosis in a Hospital Population

被引:7
作者
Martin-Gonzalez, Manuel [1 ,2 ]
Azcarraga, Carlos [1 ]
Martin-Gil, Alba [3 ]
Carpena-Torres, Carlos [3 ]
Jaen, Pedro [1 ,2 ]
机构
[1] Hosp Univ Ramon & Cajal, Serv Dermatol, Madrid 28034, Spain
[2] Inst Ramon & Cajal Invest Sanitaria, Madrid 28034, Spain
[3] Univ Complutense Madrid, Fac Opt & Optometry, Dept Optometry & Vis, Ocupharm Res Grp, Madrid 28037, Spain
关键词
melanoma; skin cancer; oncology; artificial intelligence; deep learning;
D O I
10.3390/ijerph19073892
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
(1) Background: The purpose of this study was to evaluate the efficacy in terms of sensitivity, specificity, and accuracy of the quantusSKIN system, a new clinical tool based on deep learning, to distinguish between benign skin lesions and melanoma in a hospital population. (2) Methods: A retrospective study was performed using 232 dermoscopic images from the clinical database of the Ramon y Cajal University Hospital (Madrid, Spain). The skin lesions images, previously diagnosed as nevus (n = 177) or melanoma (n = 55), were analyzed by the quantusSKIN system, which offers a probabilistic percentage (diagnostic threshold) for melanoma diagnosis. The optimum diagnostic threshold, sensitivity, specificity, and accuracy of the quantusSKIN system to diagnose melanoma were quantified. (3) Results: The mean diagnostic threshold was statistically lower (p < 0.001) in the nevus group (27.12 +/- 35.44%) compared with the melanoma group (72.50 +/- 34.03%). The area under the ROC curve was 0.813. For a diagnostic threshold of 67.33%, a sensitivity of 0.691, a specificity of 0.802, and an accuracy of 0.776 were obtained. (4) Conclusions: The quantusSKIN system is proposed as a useful screening tool for melanoma detection to be incorporated in primary health care systems.
引用
收藏
页数:8
相关论文
共 15 条
[1]  
Ali Z, 2013, EJC Suppl, V11, P81, DOI 10.1016/j.ejcsup.2013.07.012
[2]   Melanoma Diagnosis Using Deep Learning and Fuzzy Logic [J].
Banerjee, Shubhendu ;
Singh, Sumit Kumar ;
Chakraborty, Avishek ;
Das, Atanu ;
Bag, Rajib .
DIAGNOSTICS, 2020, 10 (08)
[3]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[4]  
Coronado-Guti��rrez D., 2021, SKIN CANC HIGH RISK, P1, DOI [10.1101/2021.02.04.21251132, DOI 10.1101/2021.02.04.21251132]
[5]   Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018 [J].
Ferlay, J. ;
Colombet, M. ;
Soerjomataram, I. ;
Dyba, T. ;
Randi, G. ;
Bettio, M. ;
Gavin, A. ;
Visser, O. ;
Bray, F. .
EUROPEAN JOURNAL OF CANCER, 2018, 103 :356-387
[6]   European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics - Update 2019 [J].
Garbe, Claus ;
Amaral, Teresa ;
Peris, Ketty ;
Hauschild, Axel ;
Arenberger, Petr ;
Bastholt, Lars ;
Bataille, Veronique ;
del Marmol, Veronique ;
Dreno, Brigitte ;
Fargnoli, Maria Concetta ;
Grob, Jean-Jacques ;
Hoeller, Christoph ;
Kaufmann, Roland ;
Lallas, Aimilios ;
Lebbe, Celeste ;
Malvehy, Josep ;
Middleton, Mark ;
Moreno-Ramirez, David ;
Pellacani, Giovanni ;
Saiag, Philippe ;
Stratigos, Alexander J. ;
Vieira, Ricardo ;
Zalaudek, Iris ;
Eggermont, Alexander M. M. .
EUROPEAN JOURNAL OF CANCER, 2020, 126 :141-158
[7]   Trends in mortality from cutaneous malignant melanoma in Spain (1982-2016): sex-specific age-cohort-period effects [J].
Gutierrez-Gonzalez, E. ;
Lopez-Abente, G. ;
Aragones, N. ;
Pollan, M. ;
Pastor-Barriuso, R. ;
Sanchez, M. J. ;
Perez-Gomez, B. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2019, 33 (08) :1522-1528
[8]   Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists [J].
Haenssle, H. A. ;
Fink, C. ;
Schneiderbauer, R. ;
Toberer, F. ;
Buhl, T. ;
Blum, A. ;
Kalloo, A. ;
Hassens, A. Ben Hadj ;
Thomas, L. ;
Enk, A. ;
Uhlmann, L. .
ANNALS OF ONCOLOGY, 2018, 29 (08) :1836-1842
[9]  
Kaur R, 2020, IEEE ENG MED BIO, P1524, DOI [10.1109/embc44109.2020.9175391, 10.1109/EMBC44109.2020.9175391]
[10]   Diagnostic accuracy of dermoscopy [J].
Kittler, H ;
Pehamberger, H ;
Wolff, K ;
Binder, M .
LANCET ONCOLOGY, 2002, 3 (03) :159-165