A high-order energy-conserving integration scheme for Hamiltonian systems

被引:1
|
作者
Ishimori, Yuji [1 ]
机构
[1] Toyama Prefectural Univ, Fac Engn, Imizu, Toyama 9390398, Japan
关键词
numerical integration; differential equation; high-order scheme; energy conservation; Hamiltonian system;
D O I
10.1016/j.physleta.2007.10.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new energy-conserving numerical integration method for Hamiltonian systems is presented. The method is constructed by a parallel connection of n multi-stage schemes of order 2 and its order of accuracy is 2n. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1562 / 1573
页数:12
相关论文
共 50 条
  • [1] Energy-conserving integration of constrained Hamiltonian systems - a comparison of approaches
    Leyendecker, S
    Betsch, P
    Steinmann, P
    COMPUTATIONAL MECHANICS, 2004, 33 (03) : 174 - 185
  • [2] ARBITRARILY HIGH-ORDER ENERGY-CONSERVING METHODS FOR HAMILTONIAN PROBLEMS WITH QUADRATIC HOLONOMIC CONSTRAINTS
    Amodio, Pierluigi
    Brugnano, Luigi
    Frasca-Caccia, Gianluca
    Iavernaro, Felice
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 1145 - 1171
  • [3] Energy-conserving integration of constrained Hamiltonian systems – a comparison of approaches
    S. Leyendecker
    P. Betsch
    P. Steinmann
    Computational Mechanics, 2004, 33 : 174 - 185
  • [4] Arbitrarily high-order energy-conserving methods for Poisson problems
    Pierluigi Amodio
    Luigi Brugnano
    Felice Iavernaro
    Numerical Algorithms, 2022, 91 : 861 - 894
  • [5] Arbitrarily high-order energy-conserving methods for Poisson problems
    Amodio, Pierluigi
    Brugnano, Luigi
    Iavernaro, Felice
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 861 - 894
  • [6] Explicit exactly energy-conserving methods for Hamiltonian systems
    Bilbao, Stefan
    Ducceschi, Michele
    Zama, Fabiana
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [7] Linearly Implicit and High-Order Energy-Conserving Schemes for Nonlinear Wave Equations
    Dongfang Li
    Weiwei Sun
    Journal of Scientific Computing, 2020, 83
  • [8] High-order mass-and energy-conserving methods for the nonlinear schrodinger equation
    Bai G.
    Hu J.
    Li B.
    SIAM Journal on Scientific Computing, 2024, 46 (02): : A1026 - A1046
  • [9] Linearly Implicit and High-Order Energy-Conserving Schemes for Nonlinear Wave Equations
    Li, Dongfang
    Sun, Weiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [10] High-order energy-conserving Line Integral Methods for charged particle dynamics
    Brugnano, Luigi
    Montijano, Juan, I
    Randez, Luis
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 (209-227) : 209 - 227