Construction of a Colorectal Cancer Prognostic Risk Model and Screening of Prognostic Risk Genes Using Machine-Learning Algorithms

被引:16
作者
Du, Xuezhi [1 ]
Qi, Han [2 ]
Ji, Wenbin [1 ]
Li, Peiyuan [1 ]
Hua, Run [1 ]
Hu, Wenliang [1 ]
Qi, Feng [1 ]
机构
[1] Tianjin Med Univ, Gen Hosp, Dept Gen Surg, Tianjin 300052, Peoples R China
[2] Univ Calif Berkeley, Coll Letters & Sci, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
CLUSTERIN; PLK1;
D O I
10.1155/2022/9408839
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study is aimed at constructing a prognostic risk model for colorectal cancer (CRC) using machine-learning algorithms to provide accurate staging and screening of credible prognostic risk genes. We extracted CRC data from GSE126092 and GSE156355 of the Gene Expression Omnibus (GEO) database and datasets from TCGA to analyze the differentially expressed genes (DEGs) using bioinformatics analysis. Among the 330 shared DEGs related to CRC prognosis, we divided the analysis period into different phases and applied univariate COX regression, LASSO, and multivariate COX regression analysis. GO analysis and KEGG analysis revealed that the functions of these DEGs were primarily focused on cell cycle, DNA replication, cell mitosis, and other related functions, and this confirmed our results from a biological perspective. Finally, a prognostic risk model for CRC based on the CHGA, CLU, PLK1, AXIN2, NR3C2, IL17RB, GCG, and AJUBA genes was constructed, and the risk score enabled us to predict the prognosis for CRC. To obtain a comprehensive and accurate model, we used both internal and external evaluations, and the model was able to correctly differentiate patients with CRC into a high-risk group with poor prognosis and a low-risk group with good prognosis. The AUC values of the 3-, 5-, and 10-year survival ROC curves were 0.715, 0.721, and 0.777, respectively, according to the internal evaluation, and the AUC values were 0.606, 0.698, and 0.608, respectively, for the external evaluation using GSE39582 from the GEO database. We determined that CLU, PLK1, and IL17RB could be considered to be independent prognostic factors for CRC with significantly different expression (P < 0.05). Using machine-learning methods, a prognostic risk model comprised of eight genes was constructed. Not only does this model provide improved treatment guidance, but it also provides a novel perspective for analyzing survival conditions at a deeper biological level.
引用
收藏
页数:20
相关论文
共 40 条
[1]   The clinical relevance of gene expression based prognostic signatures in colorectal cancer [J].
Ahluwalia, Pankaj ;
Kolhe, Ravindra ;
Gahlay, Gagandeep K. .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2021, 1875 (02)
[2]   High clusterin (CLU) mRNA expression levels in tumors of colorectal cancer patients predict a poor prognostic outcome [J].
Artemaki, Pinelopi, I ;
Sklirou, Aimilia D. ;
Kontos, Christos K. ;
Liosi, Aikaterini-Anna ;
Gianniou, Despoina D. ;
Papadopoulos, Iordanis N. ;
Trougakos, Ioannis P. ;
Scorilas, Andreas .
CLINICAL BIOCHEMISTRY, 2020, 75 :62-69
[3]   Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature [J].
Baran, Burcin ;
Ozupek, Nazli Mert ;
Tetik, Nihal Yerli ;
Acar, Emine ;
Bekcioglu, Omer ;
Baskin, Yasemin .
GASTROENTEROLOGY RESEARCH, 2018, 11 (04) :264-273
[4]   The Emerging Role of the IL-17B/IL-17RB Pathway in Cancer [J].
Bastid, Jeremy ;
Dejou, Cecile ;
Docquier, Aurelie ;
Bonnefoy, Nathalie .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[5]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[6]   Colorectal cancer [J].
Brenner, Hermann ;
Kloor, Matthias ;
Pox, Christian Peter .
LANCET, 2014, 383 (9927) :1490-1502
[7]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338
[8]   Hsa_circ_101555 functions as a competing endogenous RNA of miR-597-5p to promote colorectal cancer progression [J].
Chen, Zhenlong ;
Ren, Rui ;
Wan, Daiwei ;
Wang, Yilin ;
Xue, Xiaofeng ;
Jiang, Min ;
Shen, Jiaqing ;
Han, Ye ;
Liu, Fei ;
Shi, Jianming ;
Kuang, Yuting ;
Li, Wei ;
Zhi, Qiaoming .
ONCOGENE, 2019, 38 (32) :6017-6034
[9]   Present and Future Perspective on PLK1 Inhibition in Cancer Treatment [J].
Chiappa, Michela ;
Petrella, Serena ;
Damia, Giovanna ;
Broggini, Massimo ;
Guffanti, Federica ;
Ricci, Francesca .
FRONTIERS IN ONCOLOGY, 2022, 12
[10]   The Role of Polo-like Kinase 1 in Carcinogenesis: Cause or Consequence? [J].
Cholewa, Brian D. ;
Liu, Xiaoqi ;
Ahmad, Nihal .
CANCER RESEARCH, 2013, 73 (23) :6848-6855