Non-Aqueous Primary Li-Air Flow Battery and Optimization of its Cathode through Experiment and Modeling

被引:7
作者
Kim, Byoungsu [1 ]
Takechi, Kensuke [2 ]
Ma, Sichao [1 ]
Verma, Sumit [1 ]
Fu, Shiqi [1 ]
Desai, Amit [1 ]
Pawate, Ashtamurthy S. [1 ]
Mizuno, Fuminori [2 ,3 ]
Kenis, Paul J. A. [1 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, 600 South Mathews Ave, Urbana, IL 61801 USA
[2] Toyota Res Inst North Amer, Mat Res Dept, 1555 Woodridge Ave, Ann Arbor, MI 48105 USA
[3] Toyota Motor Co Ltd, Higashifuji Tech Ctr, 1200 Mishuku, Susono, Shizuoka 4101193, Japan
关键词
batteries; electrodes; ionic liquids; lithium; modeling; GAS-DIFFUSION LAYER; IONIC LIQUID ELECTROLYTES; CLAMPING PRESSURE; OXYGEN REDUCTION; LI-O-2; BATTERIES; POROUS CATHODES; ENERGY DENSITY; BIPOLAR PLATE; FUEL-CELL; LITHIUM;
D O I
10.1002/cssc.201701255
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density.
引用
收藏
页码:4198 / 4206
页数:9
相关论文
共 57 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Some Possible Approaches for Improving the Energy Density of Li-Air Batteries [J].
Andrei, P. ;
Zheng, J. P. ;
Hendrickson, M. ;
Plichta, E. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :A1287-A1295
[3]   Non-Aqueous and Hybrid Li-O2 Batteries [J].
Black, Robert ;
Adams, Brian ;
Nazar, L. F. .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :801-815
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Batteries for Electric and Hybrid-Electric Vehicles [J].
Cairns, Elton J. ;
Albertus, Paul .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 1, 2010, 1 :299-320
[6]   Effect of clamping pressure on the performance of a PEM fuel cell [J].
Chang, W. R. ;
Hwang, J. J. ;
Weng, F. B. ;
Chan, S. H. .
JOURNAL OF POWER SOURCES, 2007, 166 (01) :149-154
[7]   A High-Rate Rechargeable Li-Air Flow Battery [J].
Chen, X. J. ;
Shellikeri, A. ;
Wu, Q. ;
Zheng, J. P. ;
Hendrickson, M. ;
Plichta, E. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1619-A1623
[8]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[9]   Nano-structured gas diffusion electrode - A high power and stable cathode material for rechargeable Li-air batteries [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2013, 235 :226-233
[10]   A Critical Review of Li/Air Batteries [J].
Christensen, Jake ;
Albertus, Paul ;
Sanchez-Carrera, Roel S. ;
Lohmann, Timm ;
Kozinsky, Boris ;
Liedtke, Ralf ;
Ahmed, Jasim ;
Kojic, Aleksandar .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :R1-R30