Breathers and rogue waves of the fifth-order nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain

被引:58
作者
Sun, Wen-Rong [1 ,2 ]
Tian, Bo [1 ,2 ]
Zhen, Hui-Ling [1 ,2 ]
Sun, Ya [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Heisenberg ferromagnetic spin chain; Fifth-order nonlinear Schrodinger equation; Breathers; Rogue waves; Darboux transformation; MAXWELL-BLOCH SYSTEM; SOLITONS;
D O I
10.1007/s11071-015-2022-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
One-dimensional anisotropic Heisenberg ferromagnetic spin chain can be described by the fifth-order nonlinear Schrodinger equation, which is investigated in this paper. Through the Darboux transformation, we obtain the Akhmediev breathers (ABs), Kuznetsov-Ma (KM) solitons and rogue-wave solutions. Effects of the coefficients of the fourth-order dispersion, gamma, and of the fifth-order dispersion, delta, on the properties of ABs, KM solitons and rogue waves are discussed: (1) With gamma increasing, the AB exhibits stronger localization in time; (2) The propagation directions of an AB and a KM soliton change with the presence of d; and (3) Enhancement of gamma makes the existence time of the rogue waves shorter, while enhancement of d increases the existence time of the rogue waves.
引用
收藏
页码:725 / 732
页数:8
相关论文
共 34 条
[1]  
Ablowitz M. J., 2011, Nonlinear Dispersive Waves, DOI DOI 10.1017/CBO9780511998324
[2]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[3]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[4]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[5]   Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions [J].
Ankiewicz, Adrian ;
Wang, Yan ;
Wabnitz, Stefan ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2014, 89 (01)
[6]   Rogue waves of the nonlinear Schrodinger equation with even symmetric perturbations [J].
Ankiewicz, Adrian ;
Chowdhury, Amdad ;
Devine, Natasha ;
Akhmediev, Nail .
JOURNAL OF OPTICS, 2013, 15 (06)
[7]   Rogue waves and rational solutions of the Hirota equation [J].
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2010, 81 (04)
[8]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[9]   Soliton solutions of an integrable nonlinear Schrodinger equation with quintic terms [J].
Chowdury, A. ;
Kedziora, D. J. ;
Ankiewicz, A. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2014, 90 (03)
[10]   The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation [J].
Dai, Chao-Qing ;
Wang, Yue-Yue ;
Tian, Qing ;
Zhang, Jie-Fang .
ANNALS OF PHYSICS, 2012, 327 (02) :512-521