Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm

被引:27
作者
Abenna, Said [1 ]
Nahid, Mohammed [1 ]
Bajit, Abderrahim [2 ]
机构
[1] Hassan II Univ, Fac Sci & Technol, Casablanca, Morocco
[2] Ibn Tofail Univ, Natl Sch Appl Sci, Kenitra, Morocco
关键词
Brain-Computer Interface (BCI); Electroencephalogram (EEG); Data analysis; Feature selection; Machine learning; COMMON SPATIAL-PATTERNS; SIGNAL CLASSIFICATION; AUTOMATIC DETECTION; MACHINE; FEATURES; BCI;
D O I
10.1016/j.bspc.2021.103102
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This article contains a new method to improving the EEG motor imagery classification system quality with an application on BCI competition IV 2a, 2b, and PhysioNet EEG-MI datasets. This work uses a bandpass filter to eliminates all unused signals and then increases the prediction accuracy from 50% to more than 96% in both binary and multi-class cases, knowing that applying PSO optimizer on the parameters of the LightGBM classifier allows to find the best and stable status of EEG signals classification, also decision tree algorithm (DT) allows to get the importance degree of all acquisition electrodes used in the classification stage. This work also uses the correlation matrix to determined all artifacts between different electrodes, in such a way the prediction accuracy value increases from 50% and 60% to higher values of 96% and 98% in binary and multi-class classification, and high prediction speed remains more than 63703 and 2395 samples per second in binary and multi-class cases respectively. A comparison at the end of related works found a maximum accuracy value of around 85.5%.
引用
收藏
页数:15
相关论文
共 74 条
[1]  
Abenna S., 2021, BRAIN COMPUTER INTER, V221, P189, DOI [10.1007/978-3-030-73882-2_18, DOI 10.1007/978-3-030-73882-2_18]
[2]   Brain-computer interface: Rhythm alpha analysis for eyes signals [J].
Abenna, Said ;
Nahid, Mohammed ;
Kbelbachir, Abdelmounaim .
2020 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS), 2020,
[3]  
Abenna S, 2020, COLLOQ INF SCI TECH, P21, DOI [10.1109/CIST49399.2021.9357209, 10.1109/CiSt49399.2021.9357209]
[4]   Automated EEG-based screening of depression using deep convolutional neural network [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat ;
Subha, D. P. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 :103-113
[5]  
Alamori H, 2014, INT J ADV COMPUT SC, DOI [10.14569/ijacsa.2014.050428, DOI 10.14569/IJACSA.2014.050428]
[6]   Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion [J].
Amin, Syed Umar ;
Alsulaiman, Mansour ;
Muhammad, Ghulam ;
Mekhtiche, Mohamed Amine ;
Hossain, M. Shamim .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 101 :542-554
[7]   Multilevel Weighted Feature Fusion Using Convolutional Neural Networks for EEG Motor Imagery Classification [J].
Amin, Syed Umar ;
Alsulaiman, Mansour ;
Muhammad, Ghulam ;
Bencherif, Mohamed A. ;
Hossain, M. Shamim .
IEEE ACCESS, 2019, 7 :18940-18950
[8]   Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b [J].
Ang, Kai Keng ;
Chin, Zheng Yang ;
Wang, Chuanchu ;
Guan, Cuntai ;
Zhang, Haihong .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[9]  
[Anonymous], 2010, Commun. Surveys Tuts., DOI DOI 10.1038/nature14539
[10]  
[Anonymous], 2018, IEEE T NEUR NET LEAR, DOI DOI 10.1109/TNNLS.2018.2789927